1. Calculate the energy required to excite the hydrogen electron from level n = 1 to level n = 2. Also calculate the wavelength of light that must be absorbed by a hydrogen atom in its ground state to reach this excited state.

1. An energy of 3.3*10⁻¹⁹J/atom is required to cause a cesium atom on a metal surface to lose an electron. Calculate the longest possible wavelength of light that can ionize a cesium atom

- 2. Which set of quantum numbers <u>cannot</u> occur together to specify an orbital or a sub-orbital?
 - a) n=2, l=1, $m_l=-1$
 - b) n=3, l=2, $m_l=0$
 - c) n=3, l=3, $m_l=0$
 - d) n=4, l=3, $m_l=0$
- 3. Find the maximum number of electrons that can have these quantum numbers:

18 June, 2020

- a. **n = 3:**
- b. n = 4, ml = 1 (don't worry about anything past f orbitals):
- c. n = 4, ms = + 1/2:
- d. **n = 3, l = 2:**
- e. n = 2, l = 1:
- 4. Calculate the longest and shortest wavelengths of light emitted by electrons in the hydrogen atom that begin in the n = 6 state and then fall to states with smaller values of n.

5. An excited hydrogen atom emits light with a frequency of 1.141×10^{14} Hz to reach the energy level for which n = 4. In what principal quantum level did the electron begin?