1.

1a) Complete the structure above by adding bonds and lone pairs. Every atom will have a complete octet and a formal charge of zero. What is the hybridization around the atoms marked a through e?

a:

b:

C:

d:

e:

1b) How many σ bonds are in the structure above? How many π bonds?

1c) Circle all of the polar bonds.

1d) What are the bond angles at a, b, c, d, and e?

a:

b:

C:

d:

e:

2. Complete the following table:

Regions of	Electron	Hybridization	Angle	Total	P orbitals
high electron	Pair		between	hybrid	
density	Geometry		electron	orbitals	left
			density		over
			region		
2					
3					
4					

3. Fill out the following table!

Name &	3D Structure	Electron Pair	Molecular	Hybridization	Polarity
Lewis		Geometry	Geometry		
Structure					
Ammonia H ₂ O ₂					
SF₅⁻					
BH ₂ -					
HCN					

4. Balance the following reaction, then using bond dissociation enthalpies from the book, lecture slides or le Google, calculate the bond dissociation enthalpy of the O-F bond. The ΔH_{rxn} -318 kJ/mol.

$$\underline{\hspace{1cm}} OF_2(g) + \underline{\hspace{1cm}} H_2O(g) \rightarrow \underline{\hspace{1cm}} O_2(g) + \underline{\hspace{1cm}} HF(g)$$

5. Draw a likely spatial orientation of a single water molecule with a single molecule of NaCl.

- 6. True or False:
 - a. The principal quantum number (n) associated with an f orbital must be ≥4
 - b. For an electron to go from a lower energy level to a higher energy level, a photon must be absorbed
 - c. The freezing of water is an endothermic process
 - d. The first ionization energy of Li is less than the second ionization energy of Li
 - e. The electronegativity of H is less than that of Mg
 - f. Cations are always larger than the neutral atom of the same element.
- 7. Name three atoms or ions that are described by the following electron configuration:

 $[Ar]4s^23d^{10}4p^5$