General Chemistry I PLI #17 June 29, 2021

1. A particular balloon is designed by its manufacturer to be inflated to a volume of no more than 2.50 L. If the balloon is filled with 2.00 L helium at sea level, is released, and rises to an altitude at which the atmospheric pressure is only 500. mm Hg, will the balloon burst?

2. A mixture of NH_3 (g) and N_2H_4 (g) is placed in a sealed container at 300 K. The total pressure is 0.50 atm. The container is heated to 1200 K at which time both substances decompose completely according to the following unbalanced equations:

$$NH_3(g) \rightarrow N_2(g) + H_2(g)$$

$$N_2H_4(g)\to N_2(g)+H_2(g)$$

After decomposition is complete, the total pressure at 1200 K is found to be 4.5 atm. Find the percent of N_2H_4 (g) in the original mixture. Assume two significant figures for the temperature.

3. 5.00 g of solid calcium carbonate reacts with 100.0 mL of 0.200 M hydrochloric acid, represented by the following unbalanced equation.

$$CaCO_3 + HCl \rightarrow CaCl_2 + H_2O + CO_2$$

What volume of carbon dioxide gas is produced at a pressure of 750.0 mm Hg and a temperature of 22.0°C?

4. Using the molecular orbital model, describe the bonding, magnetism, and relative bond orders in the following species:

$$O_2$$
, O_2^- , O_2^{2-}

5.	transferred to a 12.5-L container at 20°C. A quantity of O_2 gas originally at 5.25 atm and 26°C in a 5.00-L container is transferred to this same container. What is the total pressure in the new container?
6.	 6.3 mg of a boron hydride is contained in a flask of 385 mL at 25.0°C and a pressure of 11 torr. a. Determine the molar mass of the hydride. (1 atm is equal to 760 torr)
	b. Which of the following hydrides is contained in the flask, BH $_3$, B $_2$ H $_6$, or B $_4$ H $_{10}$?
7. Draw	a likely spatial orientation of a single water molecule with a single molecule of NaC