1. Vanillin, the dominant flavoring in vanilla, contains C, H, and O. When 1.05 g of thus substance is completely combusted, 2.43 g of CO₂ and 0.50 g of H₂O are produced. What is the empirical formula of vanillin?

2. A mixture of $N_2(g)$ and $H_2(g)$ reacts in a closed container to form ammonia, $NH_3(g)$. The reaction ceases before either reactant has been totally consumed. At this stage, 3.0 mol N_2 , 3.0 mol H_2 , and 3.0 mol NH_3 are present. How many moles of N_2 and H_2 were present originally?

3. A mixture containing KClO₃, K₂CO₃, KHCO₃, and KCl was heated, producing CO₂, O₂, and H₂O gases according to the following equations:

$$2KClO_3(s) \rightarrow 2KCl(s) + 3O_2(g)$$

$$2KHCO_3(s) \to K_2O(s) + H_2O(g) + 2CO_2(g)$$

$$K_2CO_3(s) \rightarrow K_2O(s) + CO_2(g)$$

The KCl does not react under the conditions of the reaction. If $100.0 \, g$ of the mixture produces $1.80 \, g$ of H_2O , $13.20 \, g$ of CO_2 , and $4.00 \, g$ of O_2 , what was the composition of the original mixture? (Assume complete decomposition of the mixture.)

- 4. Give the oxidation number of each element in the following compounds:
 - a. BrO_3 :
 - b. H₂SO₄:
 - c. CrO₄²:
 - d. LiAlH₄:
- 5. Your friend has heard that she can make ethanol by reacting C_2H_4 with H_2O under acidic conditions, but she's not sure how much of each starting material she needs. So she randomly mixes 101.7 g of C_2H_4 with 55.19 g of H_2O .

$$C_2H_4 + H_2O \rightarrow C_2H_6O$$

a. What is the theoretical yield of ethanol in mL (ethanol density = 0.789 g/mL)?

h	How much	(mass)	excess	reactant	remains?
ы.	HOW HILDEN	(111a33 <i>)</i>	CACCOO	<i>l</i> Cactaiit	i Cilialiis i

6. Complete and balance the following molecular equations, and then write the net ionic equation for each (note in past answer keys, we have written H⁺ in net ionic equations, but it is more correct to write H₃O⁺ instead. H⁺ doesn't actually exist itself in solution):

a.
$$HBr(aq) + NH_3(aq) \rightarrow$$

b. Aqueous hydrochloric acid and sodium acetate

c. Aqueous perchloric acid and aqueous strontium hydroxide

- 7. Starting with solid sucrose, C₁₂H₂₂O₁₁, describe how you would
 - a. Prepare 250 mL of a 0.250 M sucrose solution

b. Prepare 350.0 mL of 0.100 M $C_{12}H_{22}O_{11}$ starting with 3.00 L of 1.50 M $C_{12}H_{22}O_{11}$.