PLI Extra Practice for PLI #1 (Problems taken from *Chemical Principles*, Zumdahl)

1. Fill in the missing information (Note. I could not figure out how to write isotopes in word and gave up and went to bed)

Symbol	Element	Protons	Neutrons	Electrons	Charge
14 C					
235 U 92					
32 S 2- 16					
		56	81	54	
Cl-			20		

2. A mass spectrum tells us that 60.10% of a metal is present as ⁶⁹M, and 39.90% is present as ⁷¹M. The mass values for ⁶⁹M and ⁷¹M are 68.93 amu and 70.92 amu, respectively. What is the average atomic mass of the element? What is the element?

3. Indium exists as two isotopes. ¹¹³In has a mass of 112.9043 amu, and ¹¹⁵In has a mass of 114.9041amu. The average atomic mass of indium is 114.82 amu. Calculate the percent relative abundance of the two isotopes of indium.

- 4. Strategies for balancing equations:
 - a. Find atoms that are only in one compound on the reactant side; balance those first.
 - b. Generally, leave oxygen and hydrogen until the end. They appear many times, and balancing other atoms will often force O and H to become balanced.
 - c. Double check after balancing.

$$_Ca + _C + _O_2 \rightarrow _CaCO_3$$

$$_FeS + _O_2 \rightarrow _Fe_2O_3 + _SO_2$$

$$_Mg(OH)_2 + _HCl \rightarrow _MgCl_2 + _H_2O$$

$$_CaCl_2 + _Na_3PO_4 \rightarrow _Ca_3(PO_4)_2 + _NaCl$$

5. Oxidation-Reduction:

- a. OIL RIG→ oxidation involves loss of electrons (increase in charge), reduction involves gain of electrons (decrease in charge)
- b. Something that is reduced is called an oxidizing agent. Something that is oxidized is called a reducing agent.

Assign oxidation states to each atom in the following equation. Then state which elements have been reduced/oxidized and list the oxidizing and reducing agents.

$$Fe_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Fe(l)$$

 $_PCl_5 + _H_2O \rightarrow _H_3PO_4 + _HCl$

$$2MnO_4^-(aq) + 16H^+(aq) + 5C_2O_4^{2-}(aq) \rightarrow 2Mn^{2+}(aq) + 10CO_2(g) + 8H_2O(l)$$

6.		the molecular, complete ionic, and net ionic forms for the following equations:
	a.	Aqueous acetic acid reacts with aqueous ammonia.
	b.	Aqueous perchloric acid reacts with aqueous lithium hydroxide.
	c.	Aqueous sodium hydroxide reacts with aqueous phosphoric acid.
	d.	Aqueous barium hydroxide reacts with aqueous carbonic acid.

7. Sodium hydroxide reacts with phosphoric acid to give sodium phosphate and water. If 17.80g of NaOH is mixed with 15.40g of H₃PO₄: 1. How many grams of Na₃PO₄ can be formed, 2. How many grams of excess reactant remains unreacted, 3. If actual yield of Na₃PO₄ was 15.00g, what is the percent yield of Na₃PO₄?

8. The Space Shuttle environmental control system handles excess CO₂ (which the astronauts breathe out—it is 4% by mass of exhaled air) by reacting it with LiOH pellets to form lithium carbonate and water. If there are 7 astronauts on board the shuttle and each exhales 20 liters of air per minute, how long could clean air be generated if there were 25,000g of LiOH pellets available for each shuttle mission? Assume density of air is 0.0010g/mL.

9. Predict the products of and balance the following precipitation reactions:

a.
$$KCl(aq) + Pb(NO_3)_2(aq) \rightarrow$$

b.
$$AgNO_3(aq) + MgBr_2(aq) \rightarrow$$

10. What mass of Fe(OH)₃ is produced with 35mL of a 0.250M Fe(NO₃)₃ solution is mixed with 55mL of a 0.180M KOH solution?

11. You want to determine the molar mass of an acid. The acid contains one acidic hydrogen per molecule. You weigh out a 2.879g sample of the pure acid and dissolve it, along with 3 drops of phenolphthalein indicator, in distilled water. You titrate the sample with 0.1704M NaOh. The pink endpoint is reached after addition of 42.55mL of base. Calculate the molar mass of the acid.

12. Redox titration:

a. Strategy: 1. Balance the redox equation (we recommend using the half reaction method. Good videos on youtube are Organic Chemistry Tutor and Khan Academy), 2. Determine moles of titrant, 3. Use balanced redox equation to determine moles of unknown and then convert to grams, percent, molarity, etc.

A 0.0483M KMnO₄ solution was used to titrate a solution containing 0.8329g of impure calcium oxalate, CaC₂O₄. If 30.25mL of the KMnO₄ solution was required to reach the titration endpoint, calculate the percent purity of the CaC₂O₄. This reaction takes place in acidic solution.

$$MnO_4$$
-(aq) + C_2O_4 ²-(aq) $\rightarrow Mn^{2+}$ (aq) + $CO_{2(g)}$ (Unbalanced)