REVIEW WORKSHEET

(Note: Gas constant R=62.36 L*Torr*mol⁻¹ K⁻¹ when using Torr instead of atm)

 Write the full and net ionic equation for each of the processes below. Silver nitrate + sodium oxalate
b. Hydrobromic acid + ammonia
c. Iron (II) nitrate + sodium hydroxide
d. Acetic acid + barium hydroxide
2a. Predict the electron configurations of S, K ,Ti, Sn.
2b. Write the shorthand electron configuration for: Ni
Ge
Cs
Br

- 3. An electron in a hydrogen atom is excited from the ground state to the n = 4 state. Comment on the correctness of the following statements (True or False).
- a. n = 4 is the first excited state.
- b. It takes more energy to ionize (remove) the electron from n = 4 than from the ground state.
- c. The wavelength of light emitted when the electron drops from n = 4 to n = 1 is longer than that from n = 4 to n = 2.
- d. The wavelength the atom absorbs in going from n = 1 to n = 4 is the same as that emitted as it goes from n = 4 to n = 1.
- 4. Below is a list of successive ionization energies in kJ/mol for a period 3 element. Identify the element and explain how you came to that conclusion.

- 5. Which type of intermolecular force accounts for each of these differences?
- a. CH₃OH boils at 65 °C; CH₃SH boils at 6 °C.
- b. Xe is a liquid at atmospheric pressure and 120 K, whereas Ar is a gas under the same conditions.
- c. Kr, atomic weight 84 g/mol, boils at 120.9 K, whereas Cl_2 , molecular weight 71 g/mol, boils at 238 K.
- d. Acetone boils at 56 °C, whereas 2-methylpropane boils at -12 °C.

$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5

- 6. Arrange these compounds in order of increasing boiling point. Explain your reasoning
- a. CH_4 b. CH_3CH_3 c. CH_3CH_2Cl d. CH_3CH_2OH

7. Determine if the following reactions is a redox reaction. If it is a redox reaction, identify which element is oxidized and which is reduced; provide before and after oxidation state numbers.

a.
$$Sn(s) + 4HNO_3(aq) \rightarrow SnO_2(s) + 4NO_2(g) + 2H_2O$$

b.
$$Hg_2(NO_3)_2$$
 (aq) + 2 KBr (aq) $\rightarrow H_2Br_2$ (s) + KNO₃ (aq)

c.
$$4 \text{ Al (s)} + 3O_2(g) \rightarrow 2 \text{ Al}_2O_3(s)$$

8. Compute the ΔH for the following reactions using both bond enthalpies:

a.
$$\underline{\hspace{1cm}}$$
 H₂ (g) + $\underline{\hspace{1cm}}$ Br₂ (g) \rightarrow $\underline{\hspace{1cm}}$ HBr (g)

b.
$$H_2O_2(g) \rightarrow H_2O(g) + O_2(g)$$

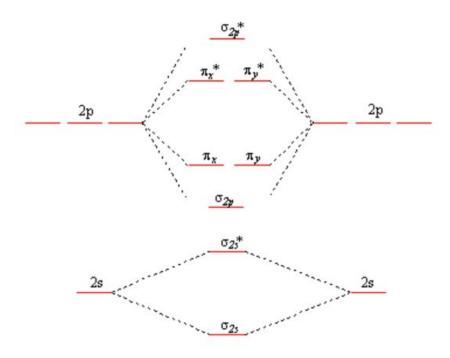
9. Below is the structure of penicillin:

- a. Fill in all lone pairs in the above molecule.
- b. What is the hybridization of atoms labeled A-E?
 - <u>۸</u>٠ ۲
- C:
- D:
- E:
- c. What is the electron geometry at the atoms labeled B-E?
 - B:

C:

D:

E:


d. Discuss one way penicillin can interact with the aqueous environment of the body using IMFs
10. What mass of sodium acetate can be obtained from mixing 15.0 g of NaHCO $_3$ with 150. mL of 0.100 M acetic acid?
11. Formic acid, HCO ₂ H, is a monoprotic weak acid. a. Write a full and net ionic equations for the reaction of aqueous formic acid and aqueous potassium hydroxide:
b. If you combine 60 g formic acid and 60 g potassium hydroxide how much water (in grams) will you produce? Which is the limiting reactant?

12. Sweat cools the body because evaporation is an endothermic process: $H_2O_{(I)} \rightarrow H_2O_{(g)} \Delta H^o_{rxn} = +44.01 \; kJ$ Estimate the mass of water that must evaporate from the skin to cool the body by 0.50°C. Assume a body mass of 95 kg and that the specific heat capacity of the body is 4.0 J/g*K.
13. Lakes that have been acidified by acid rain (HNO $_3$ and H $_2$ SO $_4$) can be neutralized by a process called liming, in which limestone (CaCo $_3$) is added to the acidified water. What mass of limestone (in kg) would be required to completely neutralize a 15.2 billion-liter lake that is 1.8 x 10^{-5} M in H $_2$ SO $_4$ and 8.7 x 10^{-6} M in HNO $_3$?
14. Find the mass of barium metal (in grams) that must react with oxygen gas to produce enough barium oxide to prepare 1.0 L of a 0.10 M solution of OH

15. CaO (s) reacts with water to form $Ca(OH)_2$ (aq). If 6.50 g CaO is combined with 99.70g H_2O in a coffee cup calorimeter, the temperature of the resulting solution increases from 21.7 °C to 43.1 °C. Calculate the enthalpy change for the reaction per mole of CaO. Assume that the specific heat capacity of the solution is 4.18 J/g•K.

- 16. If you put 120 volts of electricity through a pickle, the pickle will smoke and start glowing orange-yellow. The light is emitted because sodium ions in the pickle become excited; their return to the ground state results in light emission.
- a. The wavelength that is emitted is 589 nm. Calculate its frequency.
- b. What is the energy of 0.10 mol of these photons?
- c. Calculate the energy gap between the excited and ground states for the sodium ion.

17. Fill in the molecular orbital diagram for F_2 , give the bond order, and identify whether it is diamagnetic or paramagnetic.

18. A gaseous hydrogen and carbon containing compound is decomposed and found to contain 82.66% carbon and 17.34% hydrogen by mass. The mass of 158 mL of the gas, measured at 556 torr and 25 °C, was 0.275 g. What is the molecular formula of the compound?

GOOD LUCK!