
1. One of the first drugs to be approved for use in treatment of HIV/AIDS was azidothymidine (AZT). The complete Lewis structure of AZT is shown below:

- a. How many carbon atoms are sp³ hybridized? 6
- b. How many carbon atoms are sp² hybridized? 4
- c. Which atom is sp hybridized? Central N in N=N=N
- d. How many σ bonds are there? 33
- e. How many π bonds are in the molecule? 5
- f. What is the bond angle marked a? 180°
- g. What is the bond angle marked b? $<109.5^{\circ}$ (104.5°)
- h. What is the hybridization of atom c? sp³
- i. What is the bond order of the central N in a? 2

2. Each of the following molecules contains at least one multiple (double or triple) covalent bond. Give a plausible Lewis structure for:

ocs	CH₃CHO	F₂CO ;o:	Cl ₂ SO:	C ₂ H ₂
0=C=S	H-C-C-H	: Ë - Č - Ë:	:ci > \$ \ci;	H-C=C-H
	H			

3. Which of the following molecules would you expect to be polar?

4. Estimate ΔH_{rxn} for the following unbalanced reaction using bond dissociation enthalpy values.

$$2CH_{4}(g) + O_{2}(g) \rightarrow 2CH_{3}OH(g)$$

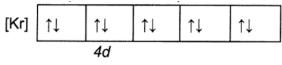
$$\Delta H_{rxn} = \Sigma_{\Delta H \ bonds \ broken} - \Sigma_{\Delta H \ bonds \ formed}$$

$$\Delta H_{rxn} = \left(8(C - H) + (O = O)\right) - \left(6(C - H) + (C - O) + (O - H)\right)$$

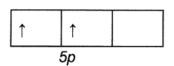
$$\Delta H_{rxn} = \left(8\left(413\frac{kJ}{mol}\right) + \left(498\frac{kJ}{mol}\right)\right)$$

$$-\left(6\left(413\frac{kJ}{mol}\right) + 2\left(358\frac{kJ}{mol}\right) + 2\left(463\frac{kJ}{mol}\right)\right)$$

$$\Delta H_{rxn} = 3802\frac{kJ}{mol} - 4120\frac{kJ}{mol}$$


$$\Delta H_{rxn} = -318\frac{kJ}{mol}$$

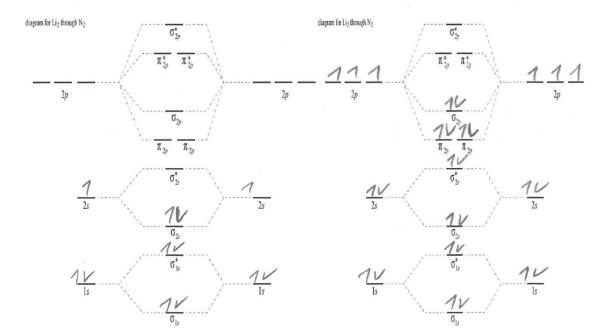
5. Acetylsalicylic acid, better known as aspirin, has the Lewis structure:


- a. What are the approximate values of the bond angles labeled 1, 2, and 3?
 - 1: 120°
 - 2: 120°
 - 3: <109.5° (104.5°)
- b. What hybrid orbitals are used about the central atom of each of these angles?
 - 1: 3 sp² hybrid orbitals
 - 2: 3 sp² hybrid orbitals
 - 3: 4 sp³ hybrid orbitals
- c. How many σ bonds are in the molecule? How many?

21 σ bonds, 5 π bonds

6. What is a possible set of quantum numbers for an unpaired electron in the orbital box diagram below?

- a. n=1, l=1, $m_l = -1$, $m_s = +\frac{1}{2}$
- b. n=4, l=2, $m_l = -1$, $m_s = -\frac{1}{2}$
- c. n=5, l=2, $m_l = -2$, $m_s = +\frac{1}{2}$
- d. n=5, l=0, m_l = 0, m_s = -1/2 e. n=5, l=1, m_l = -1, m_s = +1/2


What element is this? Sn

- 7. Using the molecular orbital (MO) Model, please:
 - a) Label each orbital and fill in the MO diagram
 - b) Calculate the bond order

Bond order: ½(bonding e⁻ - anti-bonding e⁻)

Li₂: ½(2 -0)=1

 N_2 : ½(6-0)=3

