
06/14/22

Using the following information, determine the $\Delta_{rxn}H^{\circ}$ for $CH_4(g) + H_2O(I) \rightarrow CO(g) + 3 H_2(g)$

2 CO (g) + O₂(g) → 2 CO₂ (g)
$$\Delta_{rxn}H^{\circ}$$
 = -566 kJ/mol•rxn
2 H₂ (g) + O₂ (g) → 2H₂O (l) $\Delta_{rxn}H^{\circ}$ = -570 kJ/mol•rxn
CO₂ (g) + 2 H₂O (l) → CH₄ (g) + 2 O₂(g) $\Delta_{rxn}H^{\circ}$ = +890 kJ/mol*rxn

How much energy is required to make 10 kg of H₂ (g)

Write the balanced equation for the combustion of natural gas - CH ₄ (g)
How many joules of heat can be generated when 100 pounds of natural gas is burned? The $\Delta_f H^\circ$ of $H_2O(I)$ = -285 kJ/mol, the $\Delta_f H^\circ$ of $CO_2(g)$ = -393 kJ/mol and the $\Delta_f H^\circ$ of $CH_4(g)$ = -74 kJ/mol.
How many kilograms of CO_2 will be produced in this process?
Compare coal to natural gas

Considerable combination of considera C.U.
Consider the combustion of gasoline C ₈ H ₁₈ .
Write the balanced chemical equation for this process
You combust 2.8 grams of gasoline in a calorimeter that contains 2.00 L of water and the temperature of the water increases by 15.97 °C. The $\Delta_f H^\circ$ of $H_2O(I) = -285$ kJ/mol and the $\Delta_f H^\circ$ of $H_2O(I) = -393$ kJ/mol. What is the $H_1O(I) = -393$ kJ/mol. What is the $H_1O(I) = -393$ kJ/mol.