

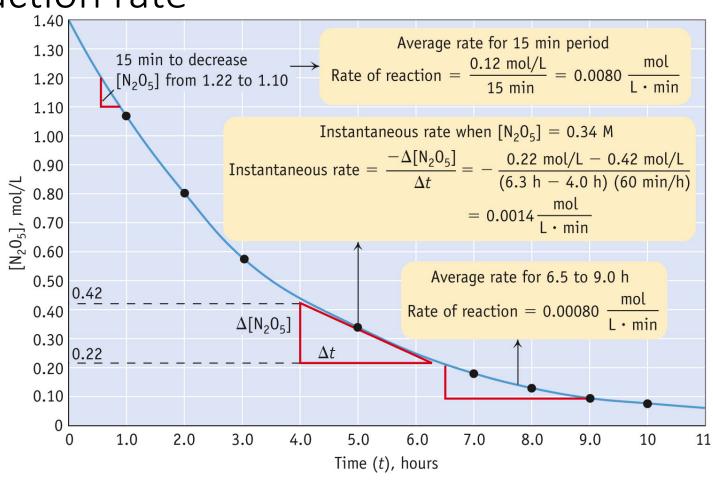
Chapter outline

- Rates of chemical reactions
- Effects of reaction conditions on rates
- Differential rate laws
 - Rate constant and rate equations
 - Method of initial rates
- Integrated rate laws
 - Zero-, first- and second-order reactions
 - Concentration vs. time graphs
- Reaction rates on a particle level
 - Activation energy
 - Arrhenius equation
- Reaction mechanisms

Reaction rate

- Reaction rate = how fast does a reaction proceed
- Reaction rate = $\frac{change\ in\ concentration}{change\ in\ time}$
- Average rate: change in concentration over a given time interval
- Instantaneous rate: slope of line tangent to concentration vs. time curve at any point in time

Reaction rate



Reaction rate in stoichiometry

- Consider the decomposition of peroxide
- $2 H_2O_2 \rightarrow 2 H_2O + O_2$
- H₂O₂ is disappearing while H₂O and O₂ are formed
- H₂O is formed at twice the rate of O₂
- To make sure that the reaction rate is calculated to be the same, regardless which reactant/product we pick to calculate it:
 - $aA + bB \rightarrow cC + dD$
 - $Rate = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{c} \frac{\Delta[C]}{\Delta t} = \frac{1}{d} \frac{\Delta[D]}{\Delta t}$

Effects of reaction conditions on rate

- Increasing concentration (of solutes in an aqueous solution) or pressure (in a reaction between gas particles) causes the rate of the reaction to increase
 - Exception: zero-order reactions
- Increasing the surface area of a solid reactant causes the rate of the reaction to increase
- Increasing temperature causes the rate of the reaction to increase
- Catalysts are substances that cause an increase in the rate of the reaction without being consumed
 - To understand how catalysts work, we need to study reaction mechanisms

Rate equations (differential rate laws)

- $aA + bB \rightarrow cC + dD$
- $Rate = k[A]^m[B]^n$
- k = rate constant (units will depend on the rate equation)
- m, n can only be determined experimentally
 - Usually positive integers, but can be negative integers, fractions or zero
- Order of the reaction = m+n
 - Zero-order: rate = k
 - First-order: rate = k[A]
 - Second-order: rate = k[A]², rate = k[A][B]

Determining rate equations

Method of initial rates

The reaction

$$2 \text{ NO(g)} + 2 \text{ H}_2(g) \rightarrow \text{N}_2(g) + 2 \text{ H}_2\text{O(g)}$$

was studied at 904 $^{\circ}$ C, and the data in the table were collected.

Reactant Concentration (mol/L)			Rate of Appearance of N ₂	
	[NO]	[H ₂]	(mol/L·s)	
	0.420	0.122	0.136	
	0.210	0.122	0.0339	
	0.210	0.244	0.0678	
	0.105	0.488	0.0339	

Sample problem

The reaction

$$2 \text{ NO (g)} + O_2 (g) \rightarrow 2 \text{ NO}_2 (g)$$

was studied, and the following data were obtained where rate = $-\frac{\Delta[O_2]}{\Delta t}$

[NO] ₀ (molecules/cm ³)	[O ₂] ₀ (molecules/cm ³)	Initial Rate (molecules/cm³ · s)
1.00×10^{18}	1.00×10^{18}	2.00×10^{16}
3.00×10^{18}	1.00×10^{18}	1.80×10^{17}
2.50×10^{18}	2.50×10^{18}	3.13×10^{17}

What would be the initial rate for an experiment where $[NO]_0 = 6.21 \times 10^{18}$ molecules/cm³ and $[O_2]_0 = 7.36 \times 10^{18}$ molecules/cm³?

Integrated rate laws

- Integrated rate laws: equation produced by integrating differential rare laws
- Useful when it comes to relating time and concentration

First-order reactions

 Express differential first-order rate law as an infinitesimal change of concentration d[A] in infinitesimally short time dt (=derivative of [A] with respect to time)

$$\bullet - \frac{d[A]}{dt} = k[A]$$

• Rearrange to have all [A] terms on one side and all t terms on another side

$$\bullet - \frac{d[A]}{[A]} = k[dt]$$

• Express the equation in integral form

•
$$-\int_{[A]_0}^{[A]} \frac{d[A]}{[A]} = k \int_0^t dt$$

 $[A]_0$ = initial concentration. 0 = initial time.

First-order reactions

$$\bullet - \int_{[A]_0}^{[A]} \frac{d[A]}{[A]} = k \int_0^t dt$$

- Integrate the equation
- $-(\ln[A] \ln[A]_0) = kt \text{ or } \ln[A] \ln[A]_0 = -kt$
- The equation can also be rewritten as:

•
$$ln\frac{[A]_0}{[A]} = kt$$
 or $ln\frac{[A]}{[A]_0} = -kt$

$$\int (1/x) dx \qquad |n|x| + C$$

Second-order reactions

$$\bullet - \frac{\mathrm{d}[\mathrm{A}]}{\mathrm{d}t} = k[\mathrm{A}]^2$$

$$\bullet - \frac{d[A]}{[A]^2} = k[dt]$$

∫x dx		$x^2/2 + C$
$\int x^2 dx$		$x^3/3 + C$
∫(x ⁿ)dx	=	x ⁿ⁺¹ /(n+1) + c

$$- \int_{[A]_0}^{[A]} \frac{d[A]}{[A]^2} = k \int_0^t dt$$

•
$$-\left[-\frac{1}{[A]} - \left(-\frac{1}{[A]_0}\right)\right] = kt \text{ or } \frac{1}{[A]} - \frac{1}{[A]_0} = kt$$

Zero-order reactions

$$\bullet - \frac{\mathrm{d}[\mathrm{A}]}{dt} = k$$

$$-d[A] = k[dt]$$

•
$$-\int_{[A]_0}^{[A]} d[A] = k \int_0^t dt$$

•
$$-([A]-[A]_0) = kt \text{ or } [A]_0 - [A] = kt$$

$$\int_{a}^{b} dx = b - a$$

Sample problem

The gas-phase decomposition of HI

$$HI(g) \rightarrow \frac{1}{2} H_2(g) + \frac{1}{2} I_2(g)$$

has the rate equation $-\frac{\Delta[HI]}{dt} = k[HI]^2$, where k = 30. M⁻¹ min⁻¹ at 443 °C. How much time does it take for the concentration of HI to drop from 0.010 M to 0.0050 M at 443 °C?

Concentration-time relationships: first-order

- First-order reactions: In[A]₀ In[A] = kt
- $ln[A] = -kt + ln[A]_0$
- Linear relationship between In[A] and t
- Plotting In[A] vs. t will yield a straight line (slope = -k)

t(s)	P × 10 ² atm	ln <i>P</i>
0	8.20	-2.50
1000	5.72	-2.86
2000	3.99	-3.22
3000	2.78	-3.58
4000	1.94	-3.94

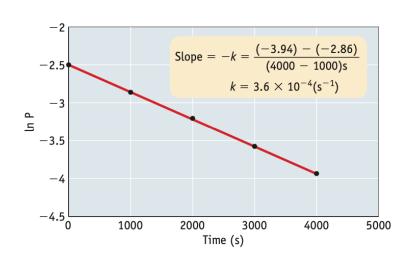


FIGURE 15.6 The decomposition of azomethane, CH₃N₂CH₃. If data for the decomposition of azomethane,

 $CH_3N_2CH_3(g) \rightarrow CH_3CH_3(g) + N_2(g)$ are plotted as the natural logarithm of the $CH_3N_2CH_3$ pressure versus time, the result is a straight line with a negative slope. This indicates a first-order reaction. The rate constant k = -slope.

Concentration-time relationships: second-order

- Second-order reactions: $\frac{1}{[A]} \frac{1}{[A]_0} = kt$
- $\frac{1}{[A]} = kt + \frac{1}{[A]_0}$
- Linear relationship between 1/[A] and t
- Plotting 1/[A] vs. t will yield a straight line (slope = k)

Time (min)	[NO ₂] (mol/L)	1/[NO ₂] (L/mol)
0	0.020	50
0.50	0.015	67
1.0	0.012	83
1.5	0.010	100
2.0	0.0087	115

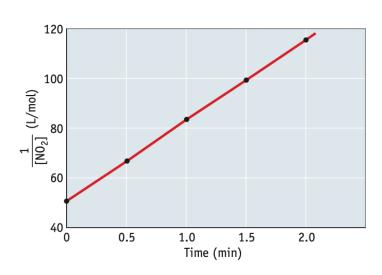


FIGURE 15.7 A second-order reaction. A plot of 1/[NO₂] versus time for the decomposition of NO₂,

$$NO_2(g) \rightarrow NO(g) + \frac{1}{2}O_2(g)$$

results in a straight line. This confirms this is a second-order reaction

firms this is a second-order reaction.

The slope of the line equals the rate constant for this reaction.

Concentration-time relationships: zero-order

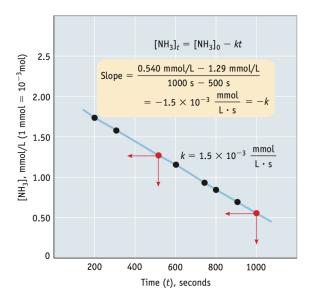
Zero-order reactions:

$$[A]_0 - [A] = kt$$

- $[A] = -kt + [A]_0$
- Linear relationship between [A] and t
- Plotting [A] vs. t will yield a straight line (slope = -k)

FIGURE 15.8 Plot of a zeroorder reaction. A graph of the concentration of ammonia, [NH₃]_t, against time for the decomposition of NH₃.

 $NH_3(g) \rightarrow \frac{1}{2} N_2(g) + \frac{3}{2} H_2(g)$ on a metal surface at 856 °C is a straight line, indicating that this is a zero-order reaction. The rate constant, k, for this reaction is found from the slope of the line; k = -slope. (The points chosen to calculate the slope are given in red.)



Half-life

- Half-life = time needed for the concentration to decrease to 50% its initial value ½
- Writing expressions for the half-life of first-, second- and zero-order reactions
 - Simple just substitute [A]₀/2 for [A]
- First-order: $ln[A]_0 ln[A] = kt$
- $ln[A]_0 ln\frac{[A]_0}{2} = kt_{1/2}$
- $\ln 2 = kt_{\frac{1}{2}} \text{ or } t_{\frac{1}{2}} = \frac{\ln 2}{k} = \frac{0.693}{k}$
- For first-order reactions, half-life is independent of [A]₀

Half-life expressions for second-order and zero-order reactions

• Second-order:
$$\frac{1}{[A]} - \frac{1}{[A]_0} = kt$$

$$\bullet \frac{1}{\frac{[A]_0}{2}} - \frac{1}{[A]_0} = kt_{1/2}$$

$$\bullet \frac{1}{[A]_0} = kt_{1/2} \text{ or }$$

•
$$t_{1/2}=\frac{1}{k[A]_0}$$

• Zero-order: $[A]_0 - [A] = kt$

•
$$[A]_0 - \frac{[A]_0}{2} = kt_{1/2}$$

•
$$\frac{[A]_0}{2} = kt_{1/2}$$
 or

Sample problem

Sucrose, $C_{12}H_{22}O_{11}$, decomposes to fructose and glucose in acid solution with the rate law

Rate =
$$k[C_{12}H_{22}O_{11}]$$
 $k = 0.216 h^{-1}$ at 25 °C

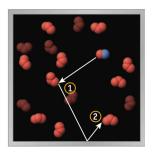
- 1. What is the half-life of $C_{12}H_{22}O_{11}$ at this temperature?
- 2. What amount of time is required for 87.5% of the initial concentration of $C_{12}H_{22}O_{11}$ to decompose?

Sample problem

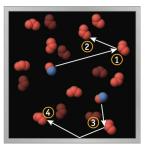
Radioactive decay is a first-order process. Radioactive radon-222 gas (²²²Rn) occurs naturally as a product of uranium decay. The half-life of ²²²Rn is 3.8 days. Suppose a flask originally contained 4.0 x 10¹³ atoms of ²²²Rn. How many atoms of ²²²Rn will remain after one month (30. days)?

Collision theory of reaction rates

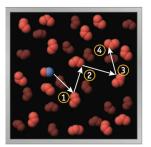
- To really understand reaction rates, we must look at the particle level
- In order to react, the particles must
 - Collide with each other
 - Collide with sufficient energy
 - Collide with proper orientation



(a) 1 N0: 16 $0_3 - 2$ hits/second. A single NO molecule, moving among sixteen O_3 molecules, is shown colliding with two of them per second.



(b) 2 NO: 16 $O_3 - 4$ hits/second. If two NO molecules move among 16 O_3 molecules, we would predict that four NO— O_3 collisions would occur per second.



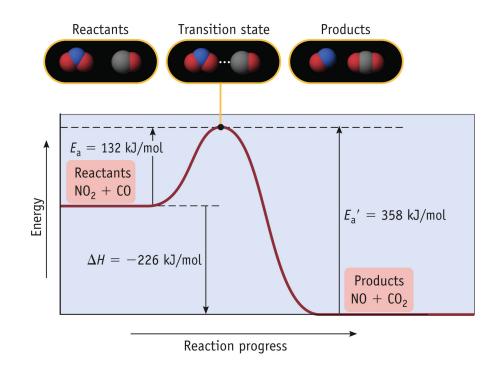
(c) 1 NO: 32 O₃ – 4 hits/second. If the number of O₃ molecules is doubled (to 32), the frequency of NO—O₃ collisions is also doubled, to four per second.

$$NO(g) + O_3(g) \rightarrow NO_2(g) + O_2(g)$$

Activation energy, E_a

- The energy barrier that needs to be overcome for the reaction to happen
 - Recall that to break bonds we need to supply energy
 - High E_a = slow rate (fewer particles will possess sufficient energy)
 - Low E_a = fast rate

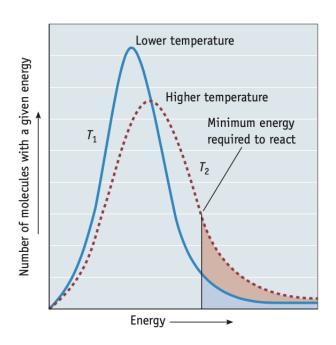
Reaction coordinate



$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

Effect of temperature on rate

- As T goes up, average kinetic energy of the particles goes up
- More particles possess sufficient energy to overcome the energy barrier
- Rate increases

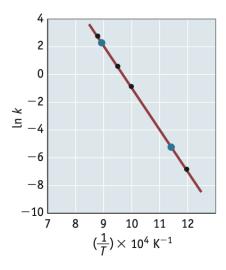


Arrhenius equation

- $k = Ae^{\frac{-E_a}{RT}}$
- k = rate constant
- E_a = activation energy (J/mol)
- R = gas constant $(8.314 \text{ J K}^{-1} \text{ mol}^{-1})$
- T = temperature (K)
- A = frequency factor
 - Reaction specific
 - Related to fraction of collisions with proper orientation

Arrhenius plot

- $k = Ae^{\frac{-E_a}{RT}}$ can be rewritten as
- $lnk = -\left(\frac{E_a}{R}\right)\frac{1}{T} + lnA$
- Linear relationship
- Allows us to calculate E_a if we know the values of rate constants at various temperatures
 - Plot lnk vs. 1/T; slope = $-\frac{E_a}{R}$
- Algebraic form: $lnk_2 lnk_1 = -\frac{E_a}{R}(\frac{1}{T_2} \frac{1}{T_1})$

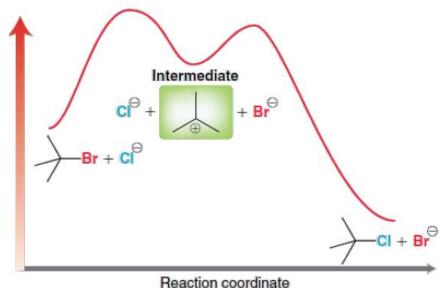


Sample problem

A certain reaction has an activation energy of 54.0 kJ/mol. As the temperature is increased from 22 °C to a higher temperature, the rate constant increases by a factor of 7.00. Calculate the higher temperature.

Reaction mechanisms

- Mechanism = how the reaction happens on a particle level
 - May have many elementary steps
 - Transition states
 - Intermediates
 - Relative energies of all species can be seen on the reaction coordinate



Overall reaction: $(CH_3)_3CBr + Cl^- \rightarrow (CH_3)_3CCl + Br^-$

Step 1: $(CH_3)_3CBr \rightarrow (CH_3)_3C^+ + Br^-$ Step 2: $(CH_3)_3C^+ + Cl^- \rightarrow (CH_3)_3CCl$ $(CH_3)_3C^+$ = intermediate

Molecularity of elementary steps

- Unimolecular = only one molecule involved in a step
- Bimolecular = two molecules involved
- Termolecular = three molecules involved
- Higher molecularities have not been observed in nature
 - The odds of >3 molecules colliding in a single step are low
- Rate laws of elementary steps can be seen from the stoichiometry
 - $(CH_3)_3CBr \rightarrow (CH_3)_3C^+ + Br^-$
 - $(CH_3)_3C^+ + CI^- \rightarrow (CH_3)_3CCI$

rate =
$$k[(CH_3)_3CBr]$$

rate =
$$k'[(CH_3)_3C^+][CI^-]$$

Determining the rate law of a multistep reaction from elementary steps

- The slowest step of the reaction will determine the overall reaction rate
 - Step with the highest E_a
 - Rate-determining step
- Intermediates should not be present in overall reaction rate laws
- Initial fast equilibrium step: rate_{forward} = rate_{reverse}

Sample problem

One of the earliest kinetic studies involved the gas phase reaction of hydrogen gas with iodine gas to make hydrogen iodide:

 $H_2(g) + I_2(g) \rightarrow 2 HI(g)$. A proposed mechanism for this process is

```
• Step 1: I_2 \Leftrightarrow 2I (fast, equilibrium)
```

- Step 2: $I + H_2 \Leftrightarrow H_2I$ (fast, equilibrium)
- Step 3: $H_2I + I \rightarrow 2 HI$ (slow)

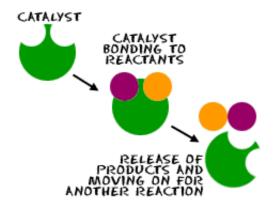
Write the rate law expected for this mechanism.

Determining mechanisms

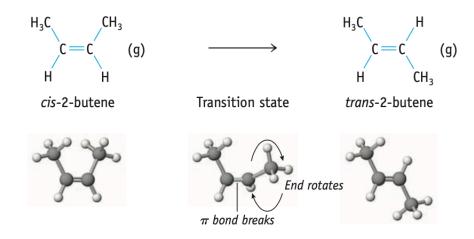
- Mechanisms cannot be "proven"
- We can gather experimental evidence that supports a mechanism
 - Figuring out on what species the rate depends (the rate law)
 - Isolating intermediates (if possible)
 - Eliminating alternative mechanisms (not consistent with experimental rate law)

Catalysts

- Not consumed during a reaction
- ullet Accelerate reactions by providing an alternative mechanism with lower E_a
- Homogeneous and heterogeneous catalysis



Example: isomerization of *cis*-2-butene to *trans*-2-butene



 $E_a = 264 \text{ kJ/mol}$

Example: isomerization of *cis*-2-butene to *trans*-2-butene

 I_2 catalyzes the reaction, providing an alternative mechanism $E_a \simeq 150 \; kJ/mol$

