General Chemistry II RR # 10 Summer 2022

Circle the best acid to combine with its sodium salt to make a solution buffered at pH
4.25. For the best choice, calculate the ratio of the conjugate base to the acid required to attain the desired pH

Chlorous acid	Formic acid	Hypochlorous acid
HCIO ₂	НСООН	HCIO
pK _a = 1.95	pK _a = 3.74	pK _a = 7.54

2. Calculate the pH of an aqueous buffer solution made from 0.15 M NH₄Cl and 0.100 M NH₃. K_a for NH₄⁺ = 5.61 x 10⁻¹⁰

3. A 1.0 L buffer solution contains 0.100 mol acetic acid (CH $_3$ COOH) and 0.100 mol sodium acetate (CH $_3$ COONa). Calculate the new pH after adding 0.010 mol of solid NaOH to the buffer. For comparison, calculate the pH after adding 0.010 mol of solid NaOH to 1.0 L pure water. K_a of acetic acid = 1.8 x 10⁻⁵.

4.	A chemist has synthesized a monoprotic weak acid and wants to determine its K_a value. She dissolves 2.00 millimoles of the solid acid in 100.0 mL of water. Assume negligible dissociation at this point. She titrates the resulting solution with 0.0500 M NaOH. After 20.0 mL NaOH has been added, the pH is 6.00. What is the K_a value for the acid?
5.	A 20.0 mL sample of 0.115 M sulfurous acid (H ₂ SO ₃) solution is titrated with 0.1014 M KOH. At what added volume of base solution does each equivalence point occur?
6.	Find the pH of each of the following points in the titration of 25.0 mL of 0.30 M HF with 0.30 M NaOH. The K_a of HF is 7. $2*10^{!4}$ a. Before adding NaOH. "X" is negligible.

b.	. After adding 10.00 mL of NaOH
c.	At the ½ equivalence point
d.	At the equivalence point. "X" is negligible.
e.	After adding 28.00 mL of NaOH
MCAT Style (Question
	rchers wish to mimic the conditions of the medial Golgi (pH \approx 6.3. Which of these rs would be best suited for this experiment?
	Acetic acid, $K_a = 1.7 \times 10^{-5}$ MES, $K_a = 7.1 \times 10^{-7}$

c. HEPES, $K_a = 2.8 \times 10^{-8}$ d. Tris, $K_a = 6.3 \times 10^{-9}$ 7.1 A buffer solution was prepared by adding 4.82 g of sodium acetate, NaCH $_3$ COO, to 2.50 x 10 2 mL of 0.160 M acetic acid, CH $_3$ COOH. What is the pH of the buffer? The K $_a$ of acetic acid is 1.8 x 10 $^{-5}$. The volume of solution doesn't change.

MCAT-Style Questions

- 8. Methanethiol, CH₃SH, has a pK_a of 10.3 and methanol, CH₃OH, has a pKa of 15.5. Which is a stronger acid? Which is a stronger base, CH₃S⁻ or CH₃O⁻?
 - a. Methanethiol is the stronger acid; its conjugate base is the stronger base
 - b. Methanol is the stronger acid; its conjugate base is the stronger base
 - c. Methanethiol is the stronger acid; methanol's conjugate base is the stronger base
 - d. Methanol is the stronger acid; methanethiol's conjugate base is the stronger base
- 9. Which of the following structural features may affect the pK_a of an acid?
 - I. Electronegativity
 - II. The length of the bond to the acidic hydrogen atom
 - III. Inductive effects
 - IV. Resonance delocalization
 - a. I only
 - b. III only
 - c. II and IV
 - d. I, II, and IV
 - e. I, II, III, and IV

10. Based on the acid comparison in Table 1, which of the following organic acids will give a 0.10 M aqueous solution with the lowest pH?

a.	Acetic acid	
d.	Acetic acid	

- b. Carbonic acid
- c. Citric acid
- d. Lactic acid

Acid	Acid Formula (HA)	Conjugate Base (A¯)	Ka
Hydrochloric	HCI	СГ	1.3 × 10 ⁶
Carbonic	H₂CO₃	HCO₃⁻	4.3 × 10 ⁻⁷
Formic	HCO₂H	CO₂H⁻	1.8 × 10⁻⁴
Acetic	HC ₂ H ₃ O ₂	C ₂ H ₃ O ₂ ⁻	1.8 × 10 ⁻⁵
Lactic	H₂C₃H₅O₃	HC ₃ H ₅ O ₃ [−]	1.4 × 10 ⁻⁴
Ascorbic	$H_2C_6H_6O_6$	HC ₆ H ₆ O ₆ ⁻	7.9 × 10 ⁻⁵
Citric	H₃C ₆ H₅O ₇	H₂C ₆ H₅O ₇ ¯	8.4 × 10 ⁻⁴

- 11. Gastric acid has a pH of 1.0. How many millimoles of hydrogen ions are present in 10.0 mL of gastric acid? Assume gastric acid comprises solely HCl.
 - a. 100 mmol
 - b. 10 mmol
 - c. 1.0 mmol
 - d. 0.10 mmol
- 12. In metal coordination complexes, the coordination number refers to:
 - a. The number of ligands that form the complex
 - b. The number of coordinate bonds formed
 - c. The number of electrons involved in the coordinate bonding
 - d. The oxidation number of the metal ion