
True or False

- (T/F) The solubility of a slightly soluble salt can be expressed in units of moles per liter
- (T / F) The solubility product of a slightly soluble salt is independent of the presence of a common ion
- (T/F) Titrating a strong acid with a strong base can produce a solution with buffer capabilities
- (T / F) In an acid/base equilibrium, the side that has the acid with the higher pK_a is the side that equilibrium favors.
- (T / F) The molarity of a monoprotic strong acid is the same as its hydronium concentration.
- (T/F) HF is a weak acid because the H-F bond is weak.
- (T/F) In a 25°C solution, it is impossible to have a negative pH.
 - 1. A buffer contains 0.10 mol of benzoic acid and 0.13 mol of sodium benzoate in 1.00 L of solution. K_a of benzoic acid = 6.3 x 10⁻⁵
 - a. What is the pH of this buffer?

h.	What is	the	nH of	the b	uffer	after	the	addition	of 0.0	3 mol	of solid	KOH?
ν.	TTIIGL 13	uic	21 1 2 1	LIIC D	ulici	aitei	uic	aaaitioii	UI U.U	'O 11101	OI SOIIC	

- 2. You titrate 182 mL of 0.45 M acetic acid with KOH solution, and you see that you used 211 mL of the KOH solution to reach the equivalence point. What is the original KOH solution's pH?
- 3. This graph shows the titration curves for two monoprotic acids.
 - a. Which curve is that of a strong acid?
 - b. What is the approximate pH at the equivalence point of each titration?
 - c. The same volume of each acid was

titrated with 0.100 M base. Which acid is more concentrated?

more concentrated:
d. Estimate the pK _a of the weak acid.
4. Calculate the concentration of NaOH in an aqueous solution of that compound that has a pH of 11.50.
 Provide an example of a neutral salt and explain why it is neutral using K_a and K_b values (no actual numbers needed)