1. What mass of ZnS ($K_{Sp} = 2.5 \times 10^{-22}$) will dissolve in 300.0 mL of 0.050 M Zn(NO_3)₂? Ignore the basic properties of S^2 . "X" is negligible.

$$ZnS(s) \leftrightarrow Zn^{2+}(aq) + S^{2-}(aq)$$

	[Zn ²⁺]	[S ²⁻]
1	0.050	0
С	+x	+x
E	0.050+x	X

$$K_{sp} = 2.5 * 10^{-22} = [Zn^{2+}][S^{2-}] = x(0.050)$$

$$x = 5.0 * 10^{-21} M = [S^{-2}]$$

$$\frac{5.0 * 10^{-21} \ mol \ S^{-2}}{L} * 0.300 \ L = 15 \ X \ 10^{-21} \ mol \ S^{-2} * \frac{1 \ mol \ ZnS}{1 \ mol \ S^{-2}} * \frac{97.45 \ g}{1 \ mol \ Zns} = \mathbf{1.46} * \mathbf{10^{-19}}$$

- 2. Predict whether the equivalence point of each of the following titration is below, above, or at pH 7.
 - a. NaHCO₃ titrated with NaOH basic
 - b. NH₃ titrated with HCl acidic
 - c. KOH titrated with HBr neutral
- 3. Consider a beaker containing a saturated solution of CaF_2 in equilibrium with undissolved CaF_2 . The molar solubility of CaF_2 at 35 degrees Celsius is 1.24 x 10^{-3} M.
 - a. What are the expression and the value for K_{sp} ? $K_{sp} = [Ca^{2+}][F^{2-}]^2 = [1.24 * 10^{-3}][2.48 * 10^{-3}]^2 = 7.63 * 10^{-9}$
 - b. Solid CaCl₂ is then added to the solution. Will the amount of CaF₂ (s) increase, decrease, or remain the same? Explain

It increases. Because Ca^{2+} , one of the products of the dissociation of CaF_2 , is already present in solution, owing to $CaCl_2$, less CaF_2 will dissolve, leading to more solid CaF_2 in the mixture.

PbBr²

4. The molar solubility of $\frac{1}{2}$ is 2.17 x 10⁻³ M at a certain temperature. Calculate K_{sp} for PbBr₂.

$$PbBr_2(s) \leftrightarrow Pb^{2+}(aq) + 2Br^{-}(aq)$$

Recall that the molar solubility refers to the solubility of the solid compound. Set up an ICE chart.

	Pb ²⁺	2Br⁻
1	0	0
С	+χ	+2x
Е	X	2x

Because the stoichiometry of the equation indicates that PbBr2 (s) and Pb2+ (aq) are in 1:1 ratio, the given molar solubility will be equal to x. Thus,

$$[Pb^{2+}]_{eq} = 2.17 * 10^{-3} M$$

$$[Br^{-}]_{eq} = 4.34 * 10^{-3} M$$

$$K_{sp} = [Pb^{2+}][Br^{-}]^2 = (2.17 * 10^{-3} M)(4.34 * 10^{-3} M)^2 = 4.09 * 10^{-8}$$

5. What is the pH at which $Cr(OH)_3$, $K_{sp} = 6.3 \times 10^{-31}$, just starts to precipitate from a 1.0 x 10^{-12} M Cr^{+3} solution?

$$Cr(OH)_3(s) \leftrightarrow Cr^{3+}(aq) + 3OH^-(aq)$$

Precipitation will occur when the reaction quotient, Q, just begins to exceed K_{sp} . You are given the concentration of Cr^{3+} , so you can solve for the equilibrium OH^{-} concentration.

$$K_{sp} = [Cr^{3+}][OH^{-}]^{3}$$

$$6.3 * 10^{-31} = (1.0 * 10^{-12} M)[OH^{-}]^{3}$$

$$[OH^-]_{eq} = 8.57 * 10^{-7} M$$

$$pOH = -\log([OH^-]_{eq}) = -\log(8.57 * 10^{-7}M) = 6.07$$

$$pH = 14 - pOH = 14 - 6.07 = 7.93$$

6. Solution A is 1.0 L of pure water. Solution B is 1.0 L of 3.4x 10^{-2} M NaCl. How many more moles of AgCl (K_{sp} = 1.77x10⁻¹⁰) dissolve in solution A than solution B? (Hint: for solution B, you can consider the change to be negligible compared to the initial concentration of Cl⁻)

Solution A:

$$AgCl(s) \leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

	Ag ⁺	Cl
1	0	0
С	+χ	+χ
E	X	X

$$K_{sp} = [Ag^+][Cl^-] = 1.77 * 10^{-10} = x^2$$

 $x = 1.33 * 10^{-5} M = molar solubility of AqCl$

$$\frac{1.33*10^{-5} \ mol \ AgCl}{1 \ L}*1.0 \ L = 1.33*10^{-5} \ mol \ AgCl \ dissolved$$

Now, consider solution B. The Na+ plays no role chemically in this case (spectator).

$$AgCl(s) \leftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$$

	Ag ⁺	Cl ⁻
1	0	0.034
С	+χ	+x
Е	X	0.034+x

← we get this number from that fact that sol'n B is 1 L of 3.4 *10⁻² M NaCl which means we have 3.4 *10⁻² mol of Cl⁻

$$K_{sp} = [Ag^+][Cl^-] = 1.77 * 10^{-10} = (x)(0.034 + x)$$

You can assume that "x" is negligible compared to the 0.034 so:

$$1.77*10^{-10} = 0.034x$$

$$x = 5.21*10^{-9}M = molar \ solubility \ of \ AgCl$$

$$\frac{5.21*10^{-9}M \ mol \ AgCl}{1 \ L}*1.0 \ L = 5.21*10^{-9} \ mol \ AgCl \ dissolved$$

LAST PART OF SOLUTION ON NEXT PAGE!!!!!

Lastly, find the difference in moles.

 $1.33*10^{-5}$ mol AgCl dissolved in A $-5.21*10^{-9}$ mols AgCl dissolved in B = $1.33*10^{-5}$ more mol AgCl dissolved in A