1. A solution is 1 x  $10^{-4}$  M in Nal, Na<sub>2</sub>SO<sub>4</sub>, and Na<sub>3</sub>PO<sub>4</sub>. What would the order of precipitation be as a source of Pb<sup>2+</sup> is added gradually to the solution? The relevant K<sub>sp</sub> values are: K<sub>sp</sub> Pbl<sub>2</sub> = 8.5 x  $10^{-9}$ ; K<sub>sp</sub> PbSO<sub>4</sub> = 1.8 x  $10^{-8}$ ; K<sub>sp</sub> Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> = 7.9 x  $10^{-43}$ . (Hint: there is no need to use ICE charts here – try to determine where the K<sub>sp</sub> is exceeded)

2. Fill in the blanks in the following table. Both ΔH and ΔS refer to the system.

| ΔΗ | ΔS | ΔG              | Low Temp        | High temp       |
|----|----|-----------------|-----------------|-----------------|
| -  | +  | -               | Spontaneous     |                 |
| -  | -  | Temp. dependent |                 |                 |
| +  | +  |                 |                 |                 |
| +  | -  |                 | Non-spontaneous | Non-spontaneous |

3. Calculate  $\Delta H^{\circ}$ ,  $\Delta S^{\circ}$ , and  $\Delta G^{\circ}$  for the following reaction to determine if it is spontaneous at 25°C.

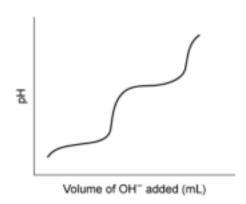
$$NH_4NO_3 s \rightarrow NH_4^+ aq + NO_3^-(aq)$$

| Compound | $\Delta H_f^{\circ}$ (kJ/mol) | ∆S°(J/K*mol) |
|----------|-------------------------------|--------------|
|----------|-------------------------------|--------------|

| NH <sub>4</sub> NO <sub>3</sub> (s) | -365.56 | 151.08 |
|-------------------------------------|---------|--------|
| NH <sub>4</sub> <sup>+</sup> (aq)   | -132.51 | 113.4  |
| NO <sub>3</sub> -(aq)               | -205.0  | 146.4  |

4. An unknown metal M forms an ionic hydroxide with the formula  $M(OH)_2$  that exhibits the equilibrium...

$$M(OH)_2(s) \leftrightarrow M^{2+}(aq) + 2OH^{-}(aq)$$


...in a saturated aqueous solution. If the solution pH is 10, what is the solubility product constant  $K_{\text{sp}}$  of the compound?

5. If the solubility product constant  $K_{sp}$  for  $NaC_9H_7O_4$  is estimated to be 34.9, what is the approximate acetylsalicylate ion concentration in a saturated  $NaC_9H_7O_4$  solution used for the reaction?

## **MCAT Style Questions**

6. The figure below shows the titration curve for an acid titrated with aqueous sodium hydroxide. When titrated in solution, which of the following salts

## would be most likely to produce a similar titration curve?



- a. (NH<sub>4</sub>)<sub>3</sub>PO<sub>4</sub>
- b. KH<sub>2</sub>PO<sub>4</sub>
- c. Na<sub>2</sub>HPO<sub>4</sub>
- d. K<sub>3</sub>PO<sub>4</sub>

7. Suppose that citric acid (
$$H_3C_6H_5O_7$$
) is titrated with 0.1 M NaOH to form a citrate buffer solution with a pH of 4.5. What is the pH at the first equivalence point? (Note: pK<sub>a</sub>1 = 3.13, pK<sub>a</sub>2 = 4.76, pK<sub>a</sub>3 = 6.40)

- a) Less than 3.13
- **b)** Between 3.13 and 4.76
- c) Equal to 3.13
- d) Greater than 4.76

## 8. Which of the following compound pairs, dissolved into solution at equal concentrations, will function as a buffer?

- a) CH<sub>3</sub>COOH (aq) and CH<sub>3</sub>COONa (aq)
- **b)**  $HNO_3$  (aq) and  $NaNO_3$  (aq)
- c) NaBr (aq) and NaCN (aq)
- d) NaOH (aq) and NaCl (aq)

9. Consider a solution of magnesium hydroxide, 
$$K_{sp}$$
 = 8.9 x 10<sup>-12</sup>. solid magnesium hydroxide begins to precipitate when which of the following expressions is true? a)  $[OH^{-}] < 1 \times 10^{-7}$ 

- **b)**  $[Mg^{2+}] = 8.9 \times 10^{-12}$
- c)  $[OH^{-}] = [Mg^{2+}]$
- **d)**  $[Mg^{2+}][OH^-]^2 > 8.9 \times 10^{-12}$

10.Suppose that a research technician wants to separate an aqueous mixture of  $CuF_2$  and  $BaF_2$  ( $K_{sp}$  = 3.0 x 10<sup>-6</sup>) by precipitating  $CuF_2$  from the solution. What should be added to the solution to perform the separation?

- a.  $Cu(NO_3)_2$
- b. NaF
- c.  $Ba(NO_3)_2$
- d. H<sub>2</sub>O