General Chemistry II

RR # 14 Summer 2022

1. One of the possible initial steps in the formation of acid rain is the oxidation of the pollutant SO₂ to SO₃ by the reaction:

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

Compound	ΔH _f ° (kJ/mol)	$\Delta S^{\circ}(J/mol*K)$
SO2 (g)	-296.8	248.2
O2 (g)	0	205.2
SO3 (g)	-395.8	256.8

a. Calculate ΔG° and determine whether the reaction is product-favored at equilibrium at 25°C.

b. Estimate the temperature at which the reaction switches between product-favored and reactant-favored at equilibrium.

- 2. For a certain chemical reaction, ΔH° =-35.4 kJ and ΔS° = -85.5 J/K.
 - a. Is the reaction exothermic or endothermic?
 - b. Does the reaction lead to an increase or decrease in the randomness/disorder of the system?
 - c. Calculate the ΔG° for the reaction at 298 K.

d. Is the reaction spontaneous at 298 K under standard conditions?

3. Classify each of the following reactions as one of the four possible types: (i) spontaneous at all temperatures, (ii) not spontaneous at any temperature; (iii) spontaneous at low T but not spontaneous at high T; (iv) spontaneous at high T but not spontaneous at low T.

a.
$$N_2(g) + 3 F_2(g) \rightarrow 2 N F_3(g)$$

 $\Delta H^{\circ} = -249 \text{ kJ}; \Delta S^{\circ} = -278 \text{ J/K}$

b.
$$N_2(g) + 3Cl_2(g) \rightarrow 2NFCl_3(g)$$

 $\Delta H^\circ = 460 \text{ kJ}; \Delta S^\circ = -275 \text{ J/K}$

c.
$$N_2F_4(g) \rightarrow 2NF_2(g)$$

 $\Delta H^{\circ} = 85 \text{ kJ}; \Delta S^{\circ} = 198 \text{ J/K}$

True or False

- (T/F) For a process that occurs at constant temperature, the change in Gibbs free energy depends on changes in the enthalpy and entropy of the system.
- (T / F) If ΔG is large and negative for a certain reaction, the rate at which the reaction occurs is fast.
 - 4. Balance the following in acidic aqueous solution. I

a.
$$PbO_2(s) + I^-(aq) \to Pb^{2+}(aq) + I_2(s)$$

b.
$$SO_3^{2-}(aq) + MnO_4^{-}(aq) \rightarrow SO_4^{2-}(aq) + Mn^{2+}(aq)$$

c.
$$Cr_2O_7^{2-}(aq) + HNO_2(aq) \rightarrow Cr^{3+}(aq) + NO_3^{-}(aq)$$

d.
$$Fe_2O_3(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$$

e.
$$HCO_2H(aq) + MnO_4^-(aq) \to CO_2(g) + Mn^{2+}(aq)$$

5. Balance the following in basic aqueous solution.
a.
$$ClO^{-}(aq) + Cr(OH)_{4}^{-}(aq) \rightarrow CrO_{4}^{2-}(aq) + Cl^{-}$$

b.
$$Ag(s) + Zn^{2+}(aq) \to Ag_2O(aq) + Zn(s)$$

c.
$$CO + I_2O_5 \rightarrow CO_2 + I_2$$

d.
$$O_2 + Sb \to H_2O_2 + SbO_2^-$$

- 6. Consider a voltaic cell involving chromium (II) and gold (I) a. Balance the following reaction: $Au^+(aq) + Cr(s) \rightarrow Au(s) + Cr^{2+}(aq)$

b. Sketch this cell, identifying the cathode and anode, the flow of electrons and the flow of cations and anions from the salt bridge (composed of NaNO₃).