General Chemistry II

RR #7 Answer Key Summer 2022

Given that the K_a for acetic acid, CH_3COOH , is 1.8 x 10^{-5} , calculate the pH of a 0.20 mol/L solution. Assume x is negligibly small compared to the original concentration of acetic acid.

Use an ICE chart.

Equation	[CH₃COOH]	H₂O	[CH ₃ COO-]	[H₃O ⁺]
I	0.20	N/A	0	0
С	-X	N/A	+x	+χ
E	0.20 - x	N/A	X	X

$$K_a = 1.8 * 10^{-5} = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = \frac{x^2}{0.20 M}$$
$$x = 1.9 * 10^{-3} M H_3O^+$$
$$pH = -log([H_3O^+]) = -log(1.9 * 10^{-3} M) = 2.72$$

2. A student prepares a 0.45 M solution of a monoprotic weak acid and determines the pH to be 3.68. What is the K_a of this weak acid? Assume x is negligibly small compared to the original concentration of acid.

Equation	[HA]	H₂O	[A-]	[H₃O ⁺]
I	0.45	N/A	0	0
С	-X	N/A	+χ	+x
E	0.45 - x	N/A	X	X

But what is x?

$$-log([H_3O^+]) = pH$$
, so $10^{-pH} = [H_3O^+]$ and $[A^-]$
$$10^{-3.68} = 2.09 * 10^{-4} M$$

So...

$$K_a = \frac{[A^-][H_3O^+]}{[HA]} = \frac{(2.09 * 10^{-4} M)^2}{0.45 M} = 9.71 * 10^{-8}$$

3. The value of K_w depends on temperature. At body temperature (37°C), $K_w = 2.4 \times 10^{-14}$ a. What is the [H₃O+] of pure water at body temperature?

$$[H_3O^+] = \sqrt{K_W} = \sqrt{2.4 * 10^{-14}} = 1.55 * 10^{-7}M$$

b. What is the [OH-] of pure water at body temperature?

$$[OH^{-}] = [H_3O^{+}] = 1.55 * 10^{-7}M$$

c. What is the pH of pure water at body temperature?

$$-log([H_3O^+]) = -log(1.55 * 10^{-7}M) = 6.81$$

d. What is the pOH of pure water at body temperature?

$$-log([OH^-]) = -log(1.55 * 10^{-7}M) = 6.81$$

- 4. Calculate [H+] for each of the following solutions, and indicate whether the solution is acidic, basic, or neutral:
 - a. [OH-] = 0.00045 M

```
\begin{split} & K_W = 10^{-14} \\ & [H+] = Kw \ / \ [OH-] = 10^{-14} \ / \ 0.00045 = \textbf{2.2 x } \textbf{10}^{\textbf{-11}} \ \textbf{M} \\ & pH = -log([H+]) = -log(2.2 \ x \ 10^{\textbf{-11}} \ \textbf{M}) = 10.65, \ \textbf{BASIC} \end{split}
```

b. $[OH-] = 8.8 \times 10^{-9} M$

```
K_W = 10^{-14}

[H+] = Kw / [OH-] = 10^{-14} / 8.8 \times 10^{-9} = 1.1 \times 10^{-6} M

pH = -log([H+]) = -log(1.1 \times 10^{-6} M) = 5.94, ACIDIC
```

c. A solution in which [OH-] is 100 times greater than [H+]

```
\begin{split} K_W &= 10^{-14} \\ &= [OH-][H+] \\ &= 100x^2 \\ x &= [H+] = \textbf{10}^{-8} \, \textbf{M} \\ pH &= -log([H+]) = -log(10^{-8} \, \textbf{M}) = 8, \, \textbf{BASIC} \end{split}
```

MCAT Style Questions

- 5. By what factor does [H+] change for a pH change of 2.00 units?
 - a. 2
 - b. 100
 - c. 200
 - d. 2000
- 6. The conjugate acid of the H₂SiO₄²⁻ (dihydrogen orthosilicate) anion is:
 - a. $H_2SiO_4^{2-}$
 - b. H₃SiO₄-
 - c. H₄SiO₄
 - d. H₃O⁺

7. The first step of a nitration reaction involves using a mixture of sulfuric acid and nitric acid to form an NO₂⁺ electrophile, as shown below.

$$H_2SO_4 + HNO_3 \longleftrightarrow HSO_4^- + H_2NO_3^+ \longleftrightarrow HSO_4^- + H_2O + NO_2^+$$

In the forward reaction of the equilibrium, which of the following molecules acts as a Bronsted-Lowry base?

- a. H₂SO₄
- b. HNO₃
- c. HSO₄
- d. H₂NO₃⁺
- 8. Hypochlorous acid dissociates in water to create hydronium ions and hypochlorite ions: HOCl + H₂O ← → H₃O⁺ + OCl⁻. Suppose that additional hypochlorite ions are added to the solution. Which of the following correctly describes the resultant effect on the concentration of HOCl?
 - a. It depends on the number of hydronium ions
 - b. It remains the same
 - c. It increases
 - d. It decreases
- 9. Suppose a large organic molecule X is classified as a Lewis acid, while another large molecule Y is classified as a Bronsted-Lowry acid. Which of the following most accurately describes a similarity in their behaviors in solution?
 - a. Both molecules will tend to acquire a net positive charge
 - b. Both molecules will release hydroxide ions
 - c. Both molecules will release hydrogen gas
 - d. Both molecules will tend to acquire a net negative charge
- ^{10.} Suppose an equilibrated, dilute solution containing an acid HA with $K_a = 10^{-4}$ is measured to have pH = 6 and [HA] = 10^{-8} M. Which of the following gives the best estimate of [A⁻]?
 - a. 10⁻⁴
 - b. 10⁻⁶
 - c. 10⁻¹⁴
 - d. 10⁻¹⁶