

Chapter outline

- Brønsted-Lowry definition of acids and bases
- pH scale
- Weak and strong acids and bases: K_a and K_b
- Acid/base properties of salts
- Direction and types of acid-base reactions
- Equilibrium calculations
- Polyprotic acids and bases
- Molecular structure and acid-base behavior
- Lewis acids and bases

Acids and bases: Brønsted-Lowry definition

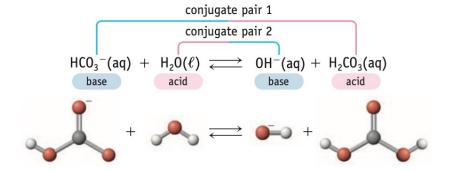
- B-L theory defines acids and bases in terms of the direction of H⁺ transfer
 - H⁺ = proton
- A B-L acid will donate a H⁺ to another species that acts as a B-L base
- A B-L base will accept a H⁺ from another species that acts as a B-L acid

Brønsted-Lowry acids and bases

• HCl (aq) + H₂O (l)
$$\rightarrow$$
 H₃O⁺ (aq) + Cl⁻ (aq)

• H⁺ + H₂O (I) \rightarrow H₃O⁺ (net ionic)

• NH_3 (aq) + H_2O (I) $\Leftrightarrow NH_4^+$ (aq) + OH^- (aq)


(If K >> 1, I often choose to write \rightarrow instead of \Leftrightarrow)

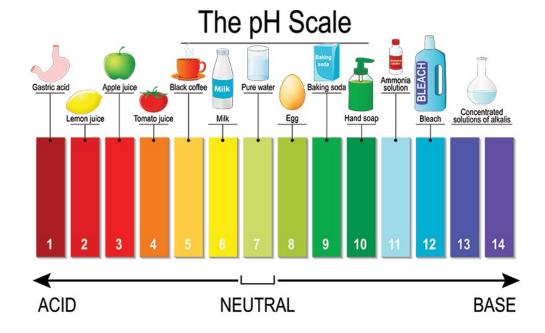
Amphiprotic species

- Can either donate or accept protons
- Example: H₂O
- $H_2O + CH_3COOH \Leftrightarrow H_3O^+ + CH_3COO^-$
- $H_2O + NH_3 \Leftrightarrow OH^- + NH_4^+$

Conjugate acid-base pairs

- Conjugate acid-base pair: two species that differ from each other by one H⁺ (CB forms when CA loses a H⁺)
 - H_3O^+ and H_2O
 - H₂O and OH⁻
 - HCO_3^- and CO_3^{2-}
- B-L acid + B-L base
 ⇔ (conjugate base of B-L acid) + (conjugate acid of B-L base)
 - The base deprotonates the acid (and is thus converted to its CA)
 - $H_2SO_4 + OH^- \rightarrow HSO_4^- + H_2O$

Autoionization of water


- 2 $H_2O(I) \Leftrightarrow H_3O^+(aq) + OH^-(aq)$
- K_{eq} (25 °C) = $[H_3O^+][OH^-]$ = 1.0 x 10⁻¹⁴
 - Heavily reactant-favored
 - $[H_3O^+] = [OH^-] = 10^{-7} M$
- We refer to the equilibrium constant of autoionization of water reaction as $\mathbf{K}_{\mathbf{w}}$
 - K_w = autoionization constant of water
 - K_w increases with T
 - What does this tell you about the sign of $\Delta H_{autoionization}$?

Neutral water and acidic/basic solutions

- At equilibrium at 25 °C: $[H_3O^+][OH^-] = K_w = 1.0 \times 10^{-14}$
- Neutral water and acidic and basic solutions
 - Neutral water: $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M$
 - Acidic solution: [H₃O⁺] > [OH⁻]
 - Basic solutions: [H₃O⁺] < [OH⁻]
 - In a neutral solution, $[H_30^+] = [0H^-]$. Both are equal to 1.0×10^{-7} M.
 - In an acidic solution, $[H_30^+] > [0H^-]$. $[H_30^+] > 1.0 \times 10^{-7}$ M and $[0H^-] < 1.0 \times 10^{-7}$ M.
 - In a basic solution, $[H_30^+] < [0H^-]$. $[H_30^+] < 1.0 \times 10^{-7}$ M and $[0H^-] > 1.0 \times 10^{-7}$ M.

pH scale

- pH = $-\log[H^{+}]$
- $pOH = -log[OH^-]$
- $pK_w = -logK_w = 14.00$
- $pH + pOH = pK_w = 14.00$
- Pure water: pH = pOH = 7.00
- Acidic solutions: pH < 7.00
- Basic solutions: pH > 7.00

SF rule for logs: result has as many decimal places as the SFs of the quantity inside the log

Acids and bases: strong and weak (Ch. 3 review)

- A strong acid/base fully dissolves in water giving off H⁺/H₃O⁺ ions (acid) or OH⁻ ions (base)
 - Sort of like a soluble ionic compound
- A weak acid/base only does it to a limited extent
- Strong acids ("the big six"): HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄
- Strong bases: all the soluble hydroxide salts
- Weak acids/bases: everything else that fits the Brønsted-Lowry definition

Quantifying "strong" and "weak"

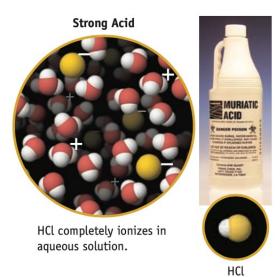
"Strong" and "weak" has to do with how acid/base species react with water molecules

ACID

- HA (aq) + H₂O (I) \Leftrightarrow H₃O⁺ (aq) + A⁻ (aq)
- $K_{eq} = K_a$
 - Acid ionization constant

•
$$K_a = \frac{[H_3 O^+][A^-]}{[HA]}$$

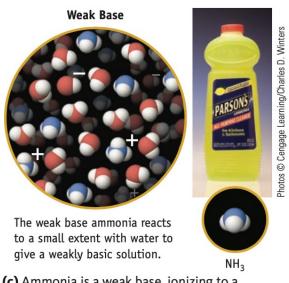
- Strong acid: K_a >> 1
 - Effectively $HA + H_2O \rightarrow H_3O^+ + A^-$
- Weak acid: K_a << 1


BASE

- B (aq) + $H_2O(I) \Leftrightarrow BH^+(aq) + OH^-(aq)$
- $K_{eq} = K_b$
 - Base ionization constant

•
$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

- Strong base: K_b >> 1
 - Effectively B + H₂O → BH⁺ + OH⁻
- Weak base: K_b << 1


Strong and weak acids and bases

(a) Hydrochloric acid, a strong acid, is sold for household use as "muriatic acid." The acid completely ionizes in water.

(b) Vinegar is a solution of acetic acid, a weak acid that ionizes only to a small extent in water.

(c) Ammonia is a weak base, ionizing to a small extent in water.

HCl (aq) +
$$H_2O$$
 (l) \rightarrow H_3O^+ (aq) + Cl^- (aq $K_a > 10^6$

HCl (aq) + H₂O (l)
$$\rightarrow$$
 H₃O⁺ (aq) + Cl⁻ (aq) CH₃COOH (aq) + H₂O (l) \Leftrightarrow H₃O⁺ (aq) + CH₃COO⁻ (aq)
K_a > 10⁶ K_a = 1.8 x 10⁻⁵

NH₃ (aq) + H₂O (I)
$$\Leftrightarrow$$
 NH₄⁺ (aq)+ OH⁻ (aq)
K_b = 1.8 x 10⁻⁵

Conjugate acid-base pairs

Consider a conjugate acid-base pair HA and A⁻

•
$$HA + H_2O \Leftrightarrow H_3O^+ + A^-$$
 (K_a)

•
$$A^- + H_2O \Leftrightarrow OH^- + HA$$
 (K_b)

• Add the two reactions: get

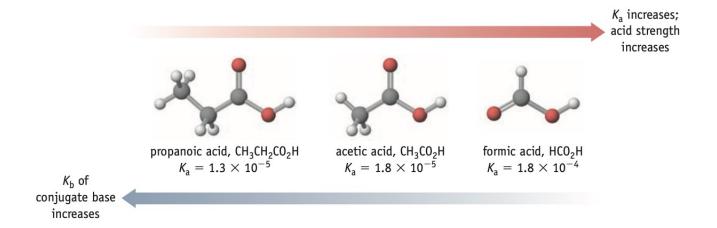
•
$$2 H_2O \Leftrightarrow H_3O^+ + OH^-$$
 (K_w)

Therefore

•
$$K_a \times K_b = K_w = 1.0 \times 10^{-14}$$

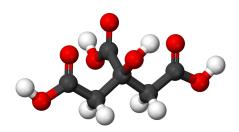
• $pK_a + pK_b = pK_w = 14.00$
 $pK_a = -log(K_a)$

- Since K_a x K_b has to remain constant...
- ...the stronger the acid (large K_a), the weaker its conjugate base (small K_b) and vice versa

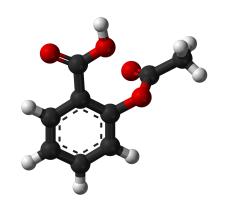

— Increasing Acid Strength —


Acid Name	Acid	K _a	Base	K _b	Base Name
Perchloric acid	HClO ₄	Large	ClO ₄ -	Very small	Perchlorate ion
Sulfuric acid	H ₂ SO ₄	Large	HSO ₄ -	Very small	Hydrogen sulfate ion
Hydrochloric acid	HCl	Large	Cl-	Very small	Chloride ion
Nitric acid	HNO ₃	Large	NO ₃ -	Very small	Nitrate ion
Hydronium ion	H ₃ 0 ⁺	1.0	H₂0	1.0×10^{-14}	Water
Sulfurous acid	H ₂ SO ₃	1.2×10^{-2}	HSO ₃ ⁻	8.3×10^{-13}	Hydrogen sulfite ion
Hydrogen sulfate ion	HSO ₄ ⁻	1.2×10^{-2}	S0 ₄ ²⁻	8.3×10^{-13}	Sulfate ion
Phosphoric acid	H ₃ PO ₄	$7.5 imes 10^{-3}$	H ₂ PO ₄ ⁻	1.3×10^{-12}	Dihydrogen phosphate ion
Hexaaquairon(III) ion	[Fe(H ₂ 0) ₆] ³⁺	6.3×10^{-3}	[Fe(H ₂ O) ₅ OH] ²⁺	1.6×10^{-12}	Pentaaquahydroxoiron(III) ion
Hydrofluoric acid	HF	7.2×10^{-4}	F-	1.4×10^{-11}	Fluoride ion
Nitrous acid	HNO ₂	4.5×10^{-4}	NO ₂ -	2.2×10^{-11}	Nitrite ion
Formic acid	HCO₂H	1.8×10^{-4}	HCO ₂ -	5.6×10^{-11}	Formate ion
Benzoic acid	C ₆ H ₅ CO ₂ H	6.3×10^{-5}	C ₆ H ₅ CO ₂ −	1.6×10^{-10}	Benzoate ion
Acetic acid	CH₃CO₂H	1.8×10^{-5}	CH ₃ CO ₂ ⁻	5.6×10^{-10}	Acetate ion
Propanoic acid	CH ₃ CH ₂ CO ₂ H	1.3×10^{-5}	CH ₃ CH ₂ CO ₂ -	7.7×10^{-10}	Propanoate ion
Hexaaquaaluminum ion	$[Al(H_2O)_6]^{3+}$	7.9×10^{-6}	[Al(H ₂ O) ₅ OH] ²⁺	1.3×10^{-9}	Pentaaquahydroxoaluminum ion
Carbonic acid	H ₂ CO ₃	4.2×10^{-7}	HCO ₃ -	2.4×10^{-8}	Hydrogen carbonate ion
lexaaquacopper(II) ion	[Cu(H ₂ O) ₆] ²⁺	1.6×10^{-7}	[Cu(H₂0)₅0H] ⁺	6.3×10^{-8}	Pentaaquahydroxocopper(II) ion
lydrogen sulfide	H ₂ S	1×10^{-7}	HS ⁻	1 × 10 ⁻⁷	Hydrogen sulfide ion
Dihydrogen phosphate ion	H ₂ PO ₄ ⁻	6.2 × 10 ⁻⁸	HP0 ₄ 2-	1.6×10^{-7}	Hydrogen phosphate ion
lydrogen sulfite ion	HSO ₃ ⁻	6.2×10^{-8}	SO ₃ 2-	1.6×10^{-7}	Sulfite ion
Hypochlorous acid	HClO	3.5×10^{-8}	CIO-	2.9×10^{-7}	Hypochlorite ion
Hexaaqualead(II) ion	[Pb(H ₂ 0) ₆] ²⁺	1.5×10^{-8}	[Pb(H₂0)₅0H]+	6.7×10^{-7}	Pentaaquahydroxolead(II) ion
lexaaquacobalt(II) ion	[Co(H ₂ O) ₆] ²⁺	1.3×10^{-9}	[Co(H ₂ O) ₅ OH] ⁺	7.7×10^{-6}	Pentaaquahydroxocobalt(II) ion
Boric acid	B(0H) ₃ (H ₂ 0)	7.3×10^{-10}	B(0H) ₄ ⁻	1.4×10^{-5}	Tetrahydroxoborate ion
Ammonium ion	NH ₄ ⁺	5.6×10^{-10}	NH ₃	1.8×10^{-5}	Ammonia
Hydrocyanic acid	HCN	4.0×10^{-10}	CN-	2.5×10^{-5}	Cyanide ion
Hexaaquairon(II) ion	[Fe(H ₂ 0) ₆] ²⁺	3.2×10^{-10}	[Fe(H ₂ 0) ₅ 0H] ⁺	3.1×10^{-5}	Pentaaquahydroxoiron(II) ion
Hydrogen carbonate ion	HCO ₃ ⁻	4.8×10^{-11}	CO ₃ 2-	2.1×10^{-4}	Carbonate ion
Hexaaquanickel(II) ion	[Ni(H ₂ 0) ₆] ²⁺	2.5×10^{-11}	[Ni(H ₂ O) ₅ OH] ⁺	4.0×10^{-4}	Pentaaquahydroxonickel(II) ion
lydrogen phosphate ion	HPO ₄ ²⁻	3.6×10^{-13}	P0 ₄ ³⁻	2.8×10^{-2}	Phosphate ion
Vater	H ₂ 0	1.0×10^{-14}	OH-	1.0	Hydroxide ion
lydrogen sulfide ion*	HS-	1 × 10 ⁻¹⁹	S ²⁻	1 × 10 ⁵	Sulfide ion
thanol	C₂H₅0H	Very small	C ₂ H ₅ O ⁻	Large	Ethoxide ion
Ammonia	NH ₃	Very small	NH ₂ -	Large	Amide ion
Hydrogen	H ₂	Very small	н-	Large	Hydride ion

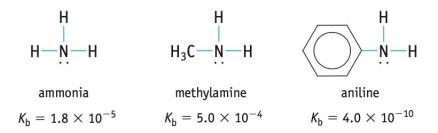
^{*}The values of $K_{\rm a}$ for HS $^-$ and $K_{\rm b}$ for S2 $^-$ are estimates.

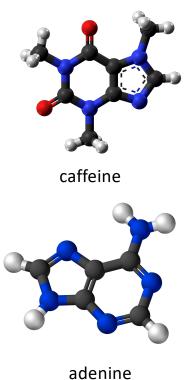

Naturally occurring organic acids

- Carboxylic acids (all are weak acids)
- Molecules with –COOH (carboxyl) group



Tartaric acid


Citric acid



Acetylsalicylic acid (aspirin)

Naturally occurring organic bases

- Amines (all are weak bases)
- Molecules with –NR₂ (–NH₂, –NHR) groups

Polyprotic acids

- Ionize in a series of steps; each step has its own K_a (or K_b)
- Example: H₃PO₄

•
$$H_3PO_4 + H_2O \Leftrightarrow H_3O^+ + H_2PO_4^-$$

•
$$H_2PO_4^- + H_2O \Leftrightarrow H_3O^+ + HPO_4^{2-}$$

•
$$HPO_4^{2-} + H_2O \iff H_3O^+ + PO_4^{3-}$$

$$K_{a1} = 7.5 \times 10^{-3}$$

$$K_{a2} = 6.2 \times 10^{-8}$$

$$K_{a3} = 3.6 \times 10^{-13}$$

•
$$K_{a1} > K_{a2} > K_{a3}$$

Acid-base properties of salts

What is the pH of a salt solution?

• KCl (aq): pH = 7

• KF (aq): pH > 7

NH₄Cl (aq): pH < 7

• NH₄F (aq): pH < 7

 $BH^+ + H_2O \Leftrightarrow B + H_3O^+$

 $A^- + H_2O \Leftrightarrow HA + OH^-$

H₃O⁺ formed: pH decreases

OH⁻ formed: pH increases

- Why? Can we predict the pH of a salt solution?
- Important concept: hydrolysis
 - Reaction of salt cations/anions with H₂O leading to its protonation (to form H₃O⁺) or deprotonation (to form OH⁻)

Example 1: KCl and hydrolysis

```
    Identify cation and anion
```

```
• K<sup>+</sup>, Cl<sup>-</sup>
```

- Write reaction of each of them with H₂O; consider effect on pH of each reaction
 - K^+ (aq) + H_2O (I) \Leftrightarrow KOH (aq) + H^+ (aq)
 - But KOH is a **strong base**: full ionization
 - Immediately have KOH (aq) → K⁺ (aq) + OH⁻ (aq)
 - OH⁻ (aq) + H⁺ (aq) \rightarrow H₂O (I)
 - So no H⁺/OH⁻ species left: pH = 7
 - Cl⁻ (aq) + H₂O (l) \Leftrightarrow HCl (aq) + OH⁻ (aq)
 - But HCl is a strong acid: full ionization
 - Immediately have HCl (ag) → H⁺ (ag) + Cl⁻ (ag)
 - H^+ (aq) + OH^- (aq) \rightarrow H_2O (I)
 - So no H⁺/OH⁻ species left: pH = 7

Verdict:

```
K<sup>+</sup> effect: pH = 7
Cl<sup>-</sup> effect: pH = 7
Overall: pH = 7
```

KCl doesn't hydrolyze!

Example 2: KF and hydrolysis

- Identify cation and anion
 - K⁺, F⁻
- Write reaction of each of them with H₂O; consider effect on pH of each reaction
 - K⁺ + H₂O: see Example 1 no reaction
 - pH = 7
 - F^- (aq) + H_2O (I) \Leftrightarrow HF (aq) + OH^- (aq)
 - HF is a weak acid: only partial ionization
 - In the end most of OH⁻ remains!
 - Result: **pH > 7**

Verdict:

K⁺ effect: **pH = 7**

F- effect: **pH > 7**

Overall: pH > 7

KF hydrolyzes!

Example 3: NH₄Cl and hydrolysis

- Identify cation and anion
 - NH₄+, Cl⁻
- Write reaction of each of them with H₂O; consider effect on pH of each reaction
 - NH_4^+ (aq) + H_2O (I) $\Leftrightarrow NH_3$ (aq) + H_3O^+ (aq)
 - NH₃ is a **weak base**: only partial ionization
 - In the end most of H₃O⁺ remains!
 - Result: **pH < 7**
 - Cl⁻ (aq) + H_2O (l): see Example 1 no reaction
 - pH = 7

Verdict:

 NH_4^+ effect: **pH < 7**

Cl⁻ effect: **pH = 7**

Overall: pH < 7

NH₄Cl hydrolyzes!

Example 4: NH₄F and hydrolysis

- Identify cation and anion
 - NH₄+, F
- Write reaction of each of them with H₂O; consider effect on pH of each reaction
 - $NH_4^+ + H_2O \Leftrightarrow NH_3 + H_3O^+$
 - F⁻ + H₂O ⇔ HF + OH⁻
 - Both H₃O⁺ and OH⁻ are produced
 - Need to see relative amounts
 - NH_4^+ : $K_a = 5.6 \times 10^{-10}$
 - F^- : $K_b = 1.4 \times 10^{-11}$
 - K_a > K_b → more H₃O⁺ is produced than OH⁻

Verdict:

NH₄⁺ effect: **pH < 7 F**⁻ effect: **pH > 7 K**_a > **K**_b, **so pH < 7**

NH₄F hydrolyzes!

Acid-base properties of salts: conclusion

- Anions that are conjugate bases of a strong acid (and "inert" cations balancing charge of strong OH⁻ bases): no reaction with H₂O
 - pH = 7
 - A salt made up entirely of such ions does not hydrolyze!
- Anions and cations that are conjugate acids or bases of a weak base or acid: react with H₂O
 - Conjugate base of a weak acid: pH > 7
 - Conjugate acid of a weak base: pH < 7
 - A salt containing at least one of such ions hydrolyzes!
 - If both cation and anion are conjugates of a weak species: consider relative K_a/K_b to predict pH

Acid-base properties of salts: conclusion

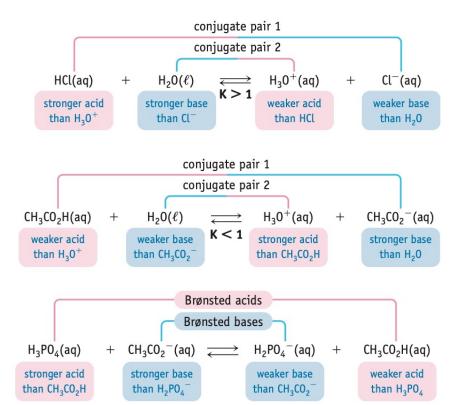
Table 17.4 Acid and Base Properties of Some Ions in Aqueous Solution

Neutral			Basic			Acidic
Anions	Cl ⁻ Br ⁻ I ⁻	NO ₃ ⁻ ClO ₄ ⁻	$CH_3CO_2^ HCO_2^ CO_3^2^ S^2^ F^-$	CN ⁻ PO ₄ ³⁻ HCO ₃ ⁻ HS ⁻ NO ₂ ⁻	SO ₄ ²⁻ HPO ₄ ²⁻ SO ₃ ²⁻ OCl ⁻	HSO ₄ ⁻ H ₂ PO ₄ ⁻ HSO ₃ ⁻
Cations	Li ⁺ Na ⁺ K ⁺	Ca ²⁺ Ba ²⁺	[Al(H20)5(OH)]2+ (for example)		$[Al(H_2O)_6]^{3+}$ and hydrated transition metal cations (such as $[Fe(H_2O)_6]^{3+}$) NH_4^+	

Cation	Anion	pH of salt solution
Group I/II	Conjugate base of a strong acid	neutral
Group I/II	Conjugate base of a weak acid	basic
	Conjugate base of a strong acid	acidic
Conjugate acid		acidic if $K_a > K_b$
of a weak base	Conjugate base of a weak acid	basic if $oldsymbol{K}_{a} < oldsymbol{K}_{b}$
		neutral if $K_a = K_b$

Reactions of amphiprotic species in water

• HCO₃⁻ is amphiprotic


```
• HCO_3^- (aq) + H_2O (I) \Leftrightarrow CO_3^{2-} (aq) + H_3O^+ (aq) K_a = 4.8 \times 10^{-11}
• HCO_3^- (aq) + H_2O (I) \Leftrightarrow H_2CO_3 (aq) + OH^- (aq) K_b = 2.4 \times 10^{-8}
```

- Would you expect a solution of HCO₃⁻ in water to be acidic or basic?
- Will HSO₄ increase or decrease the pH of water?

```
• HSO_4^- (aq) + H_2O (I) \Leftrightarrow SO_4^{2-} (aq) + H_3O^+ (aq) K_a = 1.2 \times 10^{-2}
• HSO_4^- (aq) + H_2O (I) \Leftrightarrow H_2SO_4 (aq) + OH^- (aq) K_b = \text{very small}
```

Predicting direction of acid-base reactions

- HA + B ⇔ A⁻ + HB⁺
- Strong = reactive. Weak = stable
- Proton transfer reactions will always proceed from stronger acid/base to weaker acid/base
- Use K_a/K_b tables to make predictions

Predicting direction of acid-base reactions

```
    Consider reaction of H<sub>3</sub>PO<sub>4</sub> and CH<sub>3</sub>COO<sup>-</sup>
```

```
• H_3PO_4 (aq) + CH_3COO^- (aq) \Leftrightarrow H_2PO_4^- (aq) + CH_3COOH (aq)
     • H_3PO_4 (aq) + H_2O (I) \Leftrightarrow H_2PO_4^- (aq) + H_3O^+ (aq)
                                                                                          K_{2} = 7.5 \times 10^{-3}
     • CH_3COO^- (ag) + H_2O (I) \Leftrightarrow CH_3COOH (ag) + OH^- (ag)
                                                                                          K_h = 5.6 \times 10^{-10}
                                                                                          (K_w)^{-1} = 1.0 \times 10^{14}
     • H_3O^+ (aq) + OH^- (aq) \rightarrow 2 H_2O (I)
     • K = K_a \times K_b \times K_w^{-1} = 420 (product-favored)
• H_2PO_4^- (aq) + CH_3COOH (aq) \Leftrightarrow H_3PO_4 (aq) + CH_3COO^- (aq)
     • H_2PO_4^- (aq) + H_2O (I) \Leftrightarrow H_3PO_4 (aq) + OH^- (aq)
                                                                                          K_b = 1.3 \times 10^{-12}
     • CH_3COOH (aq) + H_2O (I) \Leftrightarrow CH_3COO^- (aq) + H_3O^+ (aq)
                                                                                         K_a = 1.8 \times 10^{-5}
                                                                                          (K_{w})^{-1} = 1.0 \times 10^{14}
     • H_3O^+ + OH^- \rightarrow 2 H_2O
     • K = K_b \times K_a \times K_w^{-1} = 0.0023 (reactant-favored, doesn't proceed as written)
```

Types of acid-base reactions: strong acid + strong base

- HCl (aq) + NaOH (aq) \rightarrow H₂O (l) + NaCl (aq)
- Net ionic equation: H_3O^+ (aq) + OH^- (aq) \rightarrow 2 H_2O (I)
- K = $1/K_w$ (1.0 x 10^{14}) \rightarrow reactants completely transformed to products
- Result = Na⁺, Cl⁻, H₂O (pH = 7.00)

Mixing equal amounts (moles) of a strong base and a strong acid produces a neutral solution (pH = 7.00 at 25 °C).

Neutralization!

Types of acid-base reactions: weak acid + strong base

- CH_3COOH (aq) + NaOH (aq) $\rightarrow H_2O$ (I) + CH_3COONa (aq)
- Net ionic equation: CH_3COOH (aq) + OH^- (aq) $\rightarrow H_2O$ (I) + CH_3COO^- (aq)
- Result = Na⁺, CH₃COO⁻, H₂O (pH > 7.00)

Mixing equal amounts (moles) of a strong base and a weak acid produces a salt whose anion is the conjugate base of the weak acid. The solution is basic, with the pH depending on K_b for the anion.

Types of acid-base reactions: strong acid + weak base

- HCl (aq) + NH₃ (aq) \rightarrow NH₄Cl (aq)
- Net ionic equation: H_3O^+ (aq) + NH_3 (aq) $\rightarrow NH_4^+$ (aq) + H_2O (I)
- Result = NH_4^+ , Cl^- , H_2O (pH < 7.00)

Mixing equal amounts (moles) of a strong acid and a weak base produces a salt whose cation is the conjugate acid of the weak base. The solution is acidic, with the pH depending on K_a for the cation.

Types of acid-base reactions: weak acid + weak base

- CH_3COOH (aq) + NH_3 (aq) $\rightarrow CH_3COONH_4$ (aq)
- Net ionic equation: CH_3COOH (aq) + NH_3 (aq) $\rightarrow CH_3COO^-$ (aq) + NH_4^+ (aq)
- Result = NH_4^+ , $(K_a = 5.6 \times 10^{-10})$, $CH_3COO^ (K_b = 5.6 \times 10^{-10})$, H_2O
- Here $K_a = K_b \rightarrow pH = 7.00$

Mixing equal amounts (moles) of a weak acid and a weak base produces a salt whose cation is the conjugate acid of the weak base and whose anion is the conjugate base of the weak acid. The solution pH depends on the relative K_a and K_b values.

Calculations with K_a and K_b

• Calculate the pH of a 0.020 M solution of benzoic acid (C_6H_5COOH) given that $K_a = 6.3 \times 10^{-5}$ for the acid.

Calculations with K_a and K_b

- Assuming 100K < [A]₀ holds:
 - We can assume [A]₀ ([HA], [B]) is unchanged
 - Usually the case for most weak acids/bases with $K < 10^{-2}$)
- $\bullet \ [H_3O^+] = \sqrt{[HA]K_a}$
- $[OH^-] = \sqrt{[B]K_b}$

Polyprotic acids and bases

- Usually K_{a2} is 10^4 10^6 times smaller than K_{a1}
- pH mostly governed by the first ionization step

pH of the solution of Na₂CO₃

The CO_3^{2-} ion is a base in water, forming the HCO_3^{-} ion, which in turn can form H_2CO_3 .

 $CO_3^{2-}(aq) + H_2O(I) \Leftrightarrow HCO_3^{-}(aq) + OH^{-}(aq)$

 $K_{b1} = 2.1 \times 10^{-4}$

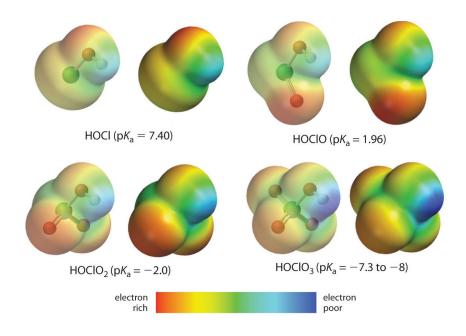
 $HCO_3^-(aq) + H_2O(I) \Leftrightarrow H_2CO_3(aq) + OH^-(aq)$ $K_{b2} = 2.4 \times 10^{-8}$

What is the pH of a 0.10 M solution of Na_2CO_3 ? What are the $[CO_3^{2-}]$, $[HCO_3^{-}]$ and $[H_2CO_3]$?

pH of the solution of Na₂CO₃

The CO_3^{2-} ion is a base in water, forming the HCO_3^{-} ion, which in turn can form H_2CO_3 .

 $CO_3^{2-}(aq) + H_2O(I) \Leftrightarrow HCO_3^{-}(aq) + OH^{-}(aq)$


 $K_{b1} = 2.1 \times 10^{-4}$

 $HCO_3^-(aq) + H_2O(I) \Leftrightarrow H_2CO_3(aq) + OH^-(aq)$ $K_{b2} = 2.4 \times 10^{-8}$

What is the pH of a 0.10 M solution of Na_2CO_3 ? What are the $[CO_3^{2-}]$, $[HCO_3^{-}]$ and $[H_2CO_3]$?

Molecular structure and acid-base behavior

 Are there structural elements that make a species act as a strong/weak acid/base?

Example 1: Hydrohalic acids (HX)

- HF is a weak acid, while HCl, HBr, HI are strong acids
- HF (weakest) << HCl < HBr < HI (strongest)
- Two factors: H–X bond strength (bond dissociation enthalpy) and electron affinity of X
 - Sum of these enthalpies correlates with acid strength

	and stronger				
	HF	HCI	HBr	н	
pK_a	+3.14	-7	-9	-10	
H—X bond strength (kJ/mol)	565	432	366	299	
Electron attachment enthalpy of X (kJ/mol)	-328	-349	-325	-295	
Sum (kJ/mol)	237	83	41	4	

Increasing acid strength ———

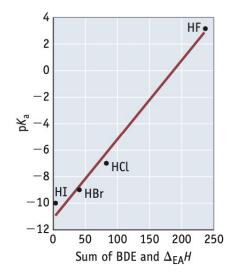



FIGURE 17.6 The effect of H—X bond enthalpy and X electron attachment enthalpy on acid strength. Stronger acids have weaker H—X bonds and X atoms with more negative electron attachment enthalpies. (BDE is the bond dissociation enthalpy of the H—X bond, and $\Delta_{EA}H$ is the electron attachment enthalpy of the halogen atom, see page 321.) See M. Moran, *Journal of Chemical Education*, Vol. 83, pp. 800–803, 2006.

Example 1: Hydrohalic acids (HX)

- HF (weakest) << HCl < HBr < HI (strongest)
- Alternative explanation of structure defining strength
- HX (aq) + $H_2O(I) \Leftrightarrow H_3O^+(aq) + X^-(aq)$
- The more stable X⁻ is, the less likely it is to react with H₃O⁺ and revert to reactants → so the stronger the acid
 - Stable (weak) conjugate base X⁻ = unstable (strong) conjugate acid HX

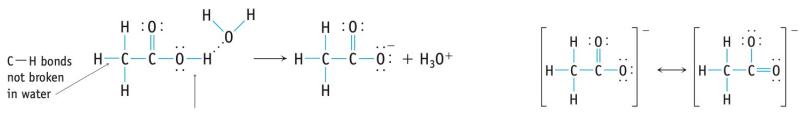
Larger ions (I⁻) are more stable (more space to spread out the charge)

Smaller ions (F⁻) are less stable (less space to spread out the charge)

Example 2: Oxoacids

- N-based oxoacids HNO₂ (weak) and HNO₃ (strong)
- Stable (weak) CB = unstable (strong CA)
 - HNO_2 (aq) + H_2O (I) $\Leftrightarrow NO_2^-$ (aq) + H_3O^+ (aq) $K_a = 4.5 \times 10^{-4}$ • HNO_3 (aq) + H_2O (I) $\rightarrow NO_3^-$ (aq) + H_3O^+ (aq) $K_a >> 1$
- To be stable, the CB needs to be able to carry the charge
 - The larger the size = the better the charge can spread
 - The more the resonance structures = the better the charge can spread

NO₃⁻ has three resonance structures


NO₂⁻ has only two resonance structures (less stable)

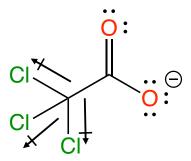
Example 2: Oxoacids

- Test the resonance hypothesis with the other oxoacid series!
- Cl-based oxoacids
 - (weakest) HOCl < HOClO < HOClO₃ (strongest)
- S-based oxoacids
 - (weakest) H₂SO₃ < H₂SO₄ (strongest)

Example 3: Carboxylic acids

- Polar O–H bond easily ionizes when R–COOH molecules interact with polar H₂O molecules
- Resulting –COO⁻ ion is stabilized by resonance

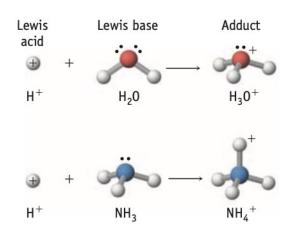
polar 0—H bond broken by interaction of positively charged H atom with hydrogen-bonded H20


$$\begin{bmatrix} H & : 0 : \\ H & : 0 : \\ H & : 0 : \end{bmatrix} \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \\ H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right] \xrightarrow{-} \left[\begin{matrix} H & : 0 : \end{matrix} \right]$$

Example 3: Carboxylic acids

 Adding electronegative substituents (e.g., -X) stabilize R–COO⁻ and makes R–COOH stronger

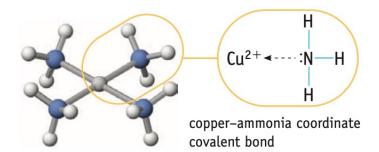
A	cid	p <i>K</i> a Value	
CH ₃ CO ₂ H	Acetic acid	4.74	
ClCH ₂ CO ₂ H	Chloroacetic acid	2.85	Increasing acid
Cl ₂ CHCO ₂ H Dichloroacetic acid		1.49	strength
Cl ₃ CCO ₂ H	Trichloroacetic acid	0.7	


 $CCl_3COOH + H_2O \Leftrightarrow CCl_3COO^- + H_3O^+$

Negative charge partially withdrawn from O by electronegative CI; this stabilizes the ion

Lewis acids and bases

- Lewis acid-base concept works for ALL molecules
 - Brønsted-Lowry concept only works for acids that contain protons
- Lewis acid accepts an electron pair
- Lewis base donates an electron pair
 - A + B: \rightarrow A-B adduct
- All Brønsted-Lowry acid-base reactions can be characterized as Lewis acid-base reactions



Cationic Lewis acids

- Metal cations act as Lewis acids
- Metal cations accept electrons from ligands (molecules or ions with lone pairs acting as Lewis bases) to form coordination complexes
 - Fe^{2+} (aq) + 6 H_2O (I) \rightarrow $[Fe(H_2O)_6]^{2+}$ (aq)
 - Cu^{2+} (aq)+ 4 NH_3 (aq) \rightarrow $[Cu(NH_3)_4]^{2+}$ (aq)
 - Al³⁺ (aq) + 4 OH⁻ (aq) \rightarrow [Al(OH)₄]⁻ (aq)

(a) Solutions of the nitrate salts of iron(III), cobalt(II), nickel(II), and copper(II) all have characteristic colors.

Amphoteric vs. amphiprotic

- Amphoteric = can act as either acid or base
 - Applies to both Lewis and Brønsted-Lowry acid-base theory
- Amphiprotic = can either accept or donate a proton
 - Only applies to Brønsted-Lowry acid-base theory

Table 17.9 Some Common Amphoteric Metal Hydroxides*

Hydroxide	Reaction as a Base	Reaction as an Acid
Al(OH) ₃	$Al(OH)_3(s) + 3 H_3O^+(aq) \Longleftrightarrow Al^{3+}(aq) + 6 H_2O(\ell)$	$Al(OH)_3(s) + OH^-(aq) \Longrightarrow [Al(OH)_4]^-(aq)$
Zn(OH) ₂	$Zn(0H)_2(s) + 2 H_30^+(aq) \Longrightarrow Zn^{2+}(aq) + 4 H_20(\ell)$	$Zn(OH)_2(s) + 2 OH^-(aq) \Longrightarrow [Zn(OH)_4]^{2-}(aq)$
Sn(OH) ₄	$Sn(0H)_4(s) + 4 H_30^+(aq) \Longrightarrow Sn^{4+}(aq) + 8 H_20(\ell)$	$Sn(OH)_4(s) + 2 OH^-(aq) \Longrightarrow [Sn(OH)_6]^{2-}(aq)$
Cr(OH) ₃	$Cr(OH)_3(s) + 3 H_3O^+(aq) \iff Cr^{3+}(aq) + 6 H_2O(\ell)$	$Cr(OH)_3(s) + OH^-(aq) \Longrightarrow [Cr(OH)_4]^-(aq)$

^{*} The aqueous metal cations are best described as $[M(H_20)_6]^{n+}$.

Molecular Lewis acids and bases

• Lewis acid-base theory explains how nonmetal oxides act as acids

$$\begin{array}{cccc}
\vdots 0^{-} & H \\
\vdots & \vdots & \vdots \\
\vdots & \vdots$$

• NH₃ is a good example of a Lewis base