- 1. Use Brønsted-Lowry theory to classify a substance as an acid (H⁺-donor) or a base (H⁺-acceptor). Recognize the ability of a substance to act as an amphiprotic species.
- 2. Write formulas for conjugated acids and bases of given species. Recognize conjugate acids and bases in a reaction.
- 3. Use the pH scale to classify a substance as acidic, neutral or basic. Know the relationship between $[H_3O^+]$, $[OH^-]$ and K_w (and pH, pOH and pK_w). Be able to calculate pH and pOH of a substance given its $[H_3O^+]$ or $[OH^-]$ concentration.
- 4. Know the six strong acids (HCl, HBr, HI, HNO₃, H₂SO₄, HClO₄). Recognize that OH⁻ is a strong base, so the soluble hydroxide salts (e.g., NaOH) act as strong bases.
- 5. Write equations for acid and base ionization in water. Write equilibrium constant expressions for K_a and K_b . Use the values of K_a and K_b (or pK_a and pK_b) to classify an acid or a base as strong or weak.
- 6. For a conjugate acid-base pair, know the relationship between K_a , K_b and K_w (and pK_a , pK_b and pK_w) and apply it to the concept of relative strength within a conjugate acid-base pair.
- 7. Write equations for ionization of polyprotic acids. Understand how the K_a/pK_a values of a polyprotic acid compare to each other.
- 8. Predict the acid/base properties of salts by writing hydrolysis reactions for their constituent ions.
- 9. Predict whether a solution of an amphiprotic species is acidic or basic by comparing the K_a and K_b values of the species.
- 10. Predict the direction of an acid-base reaction.
- 11. Perform ICE table calculations with acids and bases (including polyprotic species).
- 12. Explain the acid behavior of various acids (hydrohalic acids, oxoacids, carboxylic acids) as a result of their molecular structure.
- 13. Use Lewis theory to classify a substance as an acid (electron pair acceptor) or a base (electron pair donor).