K_P for the following reaction is 0.16 at 25 °C. What is the value of K_c ?

2 NOBr (g) \Leftrightarrow 2 NO (g) + Br₂ (g)

- $K_P = K_C (RT)^{\Delta n}$
- $0.16 = K_c(0.08206 \text{ L atm mol}^{-1} \text{ K}^{-1} \text{ x } 298.15 \text{ K})^{3-2}$
- $K_c = 6.5 \times 10^{-3}$

 $K_c = 5.6 \times 10^{-12}$ at 500 K for the dissociation of iodine molecules to iodine atoms.

$$I_2(g) \Leftrightarrow 2I(g)$$

A mixture has $[I_2] = 0.020$ M and $[I] = 2.0 \times 10^{-8}$ M. Is the reaction at equilibrium at 500 K? If not, which way must the reaction proceed to reach equilibrium?

•
$$Q = \frac{[I]^2}{[I_2]} = \frac{(2.0 \times 10^{-8})^2}{0.020} = 2.0 \times 10^{-14}$$

- $Q < K_c \rightarrow$ too many reactant particles
- Reaction will shift to the right (to make more product)

In aqueous solution Fe³⁺ ions react with I⁻ ions to give Fe²⁺ ions and I₃⁻ ions. Suppose the initial concentration of Fe³⁺ is 0.200 M, the initial I⁻ concentration is 0.300 M, and the equilibrium concentration of I₃⁻ ions is 0.0866 M. What is the value of K_C?

	2 Fe ³⁺	+ 3 Г⁻	⇔	2 Fe ²⁺	+ l ₃ ⁻
- 1	0.200 M	0.300 M		0	0
С	– 2x	– 3x		+ 2x	+ x
E	0.200 – 2x	0.300 - 3x		2x	x = 0.0866 M

$$K_c = \frac{[Fe^{2+}]^2[I_3^-]}{[Fe^{3+}]^2[I^-]^3} = \frac{(2 \times 0.0866)^2(0.0866)}{(0.200 - 2 \times 0.0866)^2(0.300 - 3 \times 0.0866)^3} = 5.6 \times 10^4$$

The equilibrium constant K_c (=55.64) for the reaction H_2 (g) + I_2 (g) \Leftrightarrow 2 HI (g) has been determined at 425 °C. If 0.130 mol each of H_2 and I_2 is placed in a 25.0-L flask at 425 °C, what are the concentrations of H_2 , I_2 and HI when equilibrium has been achieved?

	H ₂	+ I ₂	⇔	2 HI
I	5.20 x 10 ⁻³ M	5.20 x 10 ⁻³ M		0
С	- x	- x		+ 2x
Е	5.20 x 10 ⁻³ - x	$5.20 \times 10^{-3} - x$		2x

$$[H_2] = [I_2] = 1.10 \times 10^{-3} M$$

$$K_c = \frac{[HI]^2}{[H_2][I_2]} = \frac{(2x)^2}{(5.20 \times 10^{-3} - x)(5.20 \times 10^{-3} - x)} = (\frac{2x}{5.20 \times 10^{-3} - x})^2 = 55.64$$

$$\frac{2x}{5.20 \times 10^{-3} - x} = 7.459 \rightarrow 2x = 0.0388 - 7.459x \rightarrow 9.459x = 0.0388 \rightarrow x = 4.10 \times 10^{-3}$$

Equilibrium calculations: quadratic expression involving approximation

The reaction N_2 (g) + O_2 (g) \Leftrightarrow 2 NO (g) has $K_c = 1.0 \times 10^{-5}$ at 1500 K. Suppose a sample of air has $[N_2] = 0.080$ M and $[O_2] = 0.020$ M before any reaction occurs. Calculate the equilibrium concentration of reactants and products after the mixture has been heated to 1500 K.

	N ₂	+ O ₂	⇔	2 NO
I	0.080 M	0.020 M		0
С	- x	- x		+ 2x
Е	0.080 - x	0.020 – x		2x

$$K_c = \frac{[NO]^2}{[N_2][O_2]} = \frac{(2x)^2}{(0.080 - x)(0.020 - x)} = 1.0 \times 10^{-5}$$
$$4x^2 - (1.0 \times 10^{-5})x - 1.6 \times 10^{-8} = 0 \qquad \text{Quadratic expression}$$

Equilibrium calculations: quadratic expression involving approximation

Use approximation to update the table and make your life easier $[N_2]$ and $[O_2]$ don't significantly change during the reaction.

	N ₂	+ O ₂	⇔	2 NO
I	0.080 M	0.020 M		0
С	~ 0	- x		+ 2x
Е	~0.080 M	~0.020 M		2x

$$K_c = \frac{[NO]^2}{[N_2][O_2]} = \frac{(2x)^2}{(0.080)(0.020)} = 1.0 \times 10^{-5}$$

$$[NO] = 1.3 \times 10^{-4} \text{ M}$$

$$x^2 = 4.0 \times 10^{-9} \rightarrow x = 6.3 \times 10^{-5}$$

Calculate K for the reaction

$$SnO_2(s) + 2CO(g) \Leftrightarrow Sn(s) + 2CO_2(g)$$

given the following information:

•
$$SnO_2(s) + 2 H_2(g) \Leftrightarrow Sn(s) + 2 H_2O(g)$$
 $K = 8.12$

•
$$H_2(g) + CO_2(g) \Leftrightarrow H_2O(g) + CO(g)$$
 $K = 0.771$

• SnO₂ (s) +
$$\frac{2 H_2(g)}{(g)}$$
 \Leftrightarrow Sn (s) + $\frac{2 H_2O(g)}{(g)}$ $K_1 = 8.12$

• 2H₂O (g) + 2 CO (g) ⇔ 2 H₂ (g) + 2 CO₂ (g)
$$K_2 = (\frac{1}{0.771})^2$$

•
$$K_{net} = K_1 K_2 = (8.12)(\frac{1}{0.771})^2 = 13.7$$

 N_2O_3 decomposes to NO and NO_2 is an endothermic process ($\Delta H^\circ = 40.5 \text{ kJ}$) N_2O_3 (g) \Leftrightarrow NO (g) + NO₂ (g)

Predict the effect of the following changes on the equilibrium position.

- Adding more N_2O_3 (g) \rightarrow
- Adding more NO₂ (g) ←
- Increasing the volume of the reaction flask →
 - System feels lower P (because V increased)
 - System needs to increase P by shifting to the side with more moles of gas
 - Reaction will shift to right (2 moles of gas on the right vs. 1 mole of gas on the left)
- Lowering the temperature ←
 - Reaction is endothermic so heat is a reactant
 - Lower T = less heat = less reactant