pH of a buffer solution

What is the pH of an CH_3COOH/CH_3COONa buffer with $[CH_3COOH] = 0.700 \text{ M}$ and $[CH_3COO^-] = 0.600 \text{ M}$?

	CH₃COOH	+ H ₂ O	⇔	CH₃COO⁻	+ H₃O⁺
I	0.700 M			0.600 M	0
С	~0			~0	+ x
E	0.700 M			0.600 M	X

$$K_a = 1.8 \times 10^{-5} = \frac{[CH_3COO^-][H_3O^+]}{[CH_3COOH]} = \frac{(0.600 M)(x)}{(0.700 M)} \rightarrow x = [H_3O^+] = \frac{[CH_3COOH](K_a)}{[CH_3COO^-]} = 2.1 \times 10^{-5} M$$

$$pH = -log(2.1 \times 10^{-5} M) = 4.68$$

Henderson-Hasselbalch expression

Benzoic acid (C_6H_5COOH , 2.00 g) and sodium benzoate (C_6H_5COONa , 2.00 g) are dissolved in enough water to make 1.00 L of solution. Calculate the pH of the solution using the Henderson-Hasselbalch expression

$$2.00 \ g \ C_6 H_5 COOH \times \frac{1 \ mol}{122.12 \ g} = 0.0164 \ mol \ C_6 H_5 COOH$$

$$\frac{0.0164 \ mol \ C_6H_5COOH}{1.00 \ L} = 0.0164 \ M \ C_6H_5COOH$$

$$2.00 \ g \ C_6H_5COONa \times \frac{1 \ mol}{144.11 \ g} = 0.0139 \ mol \ C_6H_5COONa$$

$$\frac{0.0139 \ mol \ C_6 H_5 COONa}{1.00 \ L} = 0.0139 \ M \ C_6 H_5 COONa = 0.0139 \ M \ C_6 H_5 COO^-$$

$$pH = pK_a + log \frac{[C_6H_5COO^-]}{[C_6H_5COOH]} = -log(6.3 \times 10^{-5}) + log \frac{0.0139 M}{0.0164 M} = 4.13$$

Preparing a buffer solution

Describe how to prepare a buffer solution from Na_2HPO_4 and NaH_2PO_4 to have a pH of 7.5 (pK_a of $H_2PO_4^-$ is 7.21)

$$pH = pK_a + log \frac{[HPO_4^{2-}]}{[H_2PO_4^{-}]} \rightarrow 7.5 = 7.21 + log \frac{[HPO_4^{2-}]}{[H_2PO_4^{-}]} \rightarrow \frac{[HPO_4^{2-}]}{[H_2PO_4^{-}]} = 10^{7.5-7.21} = 2.0$$

Need 2.0 x moles of Na₂HPO₄ than moles of NaH₂PO₄.

For example, use 1.0 mol Na_2HPO_4 (140 g) and 0.5 mol NaH_2PO_4 (60. g); dissolve in appropriate volume of water.

How does a buffer maintain constant pH?

What is the change in pH when 1.00 mL of 1.00 M HCl is added to (1) 1.000 L of pure water, and (2) 1.000 L of CH₃COOH/CH₃COO⁻ buffer with [CH₃COOH] = 0.700 M and [CH₃COO⁻]=0.600 M?

$$0.00100 \ L \ HCl \times \frac{1.00 \ mol}{1 \ L} = 1.00 \times 10^{-3} \ mol \ HCl = 1.00 \times 10^{-3} \ mol \ H_3O^+$$

$$\frac{1.00 \times 10^{-3} \ mol \ H_3 O^+}{1.001 \ L} = 9.99 \times 10^{-4} \ MH_3 O^+$$

Pure water:

Initial pH = 7.00

Final pH = $-\log[9.99 \times 10^{-4} \text{ M H}_3\text{O}^+] = 3.000$

How does a buffer maintain constant pH?

What is the change in pH when 1.00 mL of 1.00 M HCl is added to (1) 1.000 L of pure water, and (2) 1.000 L of CH_3COOH/CH_3COO^- buffer with $[CH_3COOH] = 0.700$ M and $[CH_3COO^-] = 0.600$ M?

CH₃COOH/CH₃COO⁻ buffer: CH₃COO⁻ can neutralize H₃O⁺.

$$pK_a = -log(1.8 \times 10^{-5}) = 4.74$$

$$V = 1.001 L$$

	CH₃COO⁻(aq)	+ H ₃ O+ (aq)	→	CH₃COOH (aq)	+ H ₂ O (I)
Initial moles	0.600 mol	1.00 x 10 ⁻³ mol		0.700 mol	
Change in moles	– 1.00 x 10 ⁻³ mol	– 1.00 x 10 ⁻³ mol		+ 1.00 x 10 ⁻³ mol	
Final moles	0.599 mol	0		0.701 mol	

$$pH = pK_a + log \frac{[CH_3COO^-]}{[CH_3COOH]} = 4.74 + log \frac{0.599 M}{0.701 M} = 4.68$$

Initial pH was 4.68, so it didn't change.

Calculating K_{sp}

- CaF_2 , the main component of the mineral fluorite, dissolves to a slight extent in water. Calculate the K_{sp} value for CaF_2 if $[Ca^{2+}]$ has been found to be 2.3 x 10^{-4} M.
- CaF_2 (s) \Leftrightarrow Ca^{2+} (aq) + 2 F^- (aq)
- $[F^-] = 2[Ca^{2+}] = 4.6 \times 10^{-4} M$
- $K_{sp} = [Ca^{2+}][F^{-}]^2 = (2.3 \times 10^{-4})(4.6 \times 10^{-4})^2 = 4.9 \times 10^{-11}$

Solubility from K_{sp}

The K_{sp} value for MgF₂ is 5.2 x 10⁻¹¹. Calculate the solubility of MgF₂ in (a) M, and (b) g/L

- MgF_2 (s) \Leftrightarrow Mg^{2+} (aq) + 2 F^- (aq)
- $K_{sp} = [Mg^{2+}][F^{-}]^2$
- $[F^-] = 2[Mg^{2+}]$
- 5.2 x $10^{-11} = [Mg^{2+}](2[Mg^{2+}])^2$
- 5.2 x $10^{-11} = 4[Mg^{2+}]^3$

•
$$[Mg^{2+}] = \sqrt[3]{\frac{5.2 \times 10^{-11}}{4}} = 2.4 \times 10^{-4} M$$

- 2.4 x 10⁻⁴ mol MgF₂ dissolves in 1 L of water
- $2.4 \times 10^{-4} \ mol \ MgF_2 \times \frac{62.3018 \ g}{1 \ mol \ MgF_2} = 0.015 \ g \ MgF_2 \ dissolves \ in \ 1 \ Lof \ water$

Solubility and common ion effect

If AgCl (s) is placed in 1.00 L of 0.55 M NaCl, what mass of AgCl will dissolve?

	AgCl (s)	⇔	Ag+ (aq)	+ Cl ⁻ (aq)
1	N/A		0	0.55 M
С	- x		+ x	+ x
Ε	(N/A - x)		x	~0.55

$$100K_{sp} < [A]_0$$

•
$$K_{sp} = [Ag^+][Cl^-] \to 1.8 \times 10^{-10} = x(0.55) \to x = [Ag^+] = 3.3 \times 10^{-10} M$$

• 3.3 x 10⁻¹⁰ mol AgCl will dissolve in 1.00 L solution

•
$$3.3 \times 10^{-10} \ mol \ AgCl \times \frac{143.32 \ g}{1 \ mol} = 4.7 \times 10^{-8} \ g \ AgCl \ will \ dissolve$$

• AgCl (s) is less soluble in solution containing one of its ions than in pure water

Precipitation reactions

The concentration of Ba²⁺ in a solution is 0.010 M. What concentration of SO_4^{2-} is required to begin the precipitation of BaSO₄ (s)?

- Begin precipitation: $Q = K_{sp}$
- BaSO₄ (s) \Leftrightarrow Ba²⁺ (aq) + SO₄²⁻ (aq)
- $K_{sp} = [Ba^{2+}][SO_4^{2-}]$
- 1.1 x $10^{-10} = [0.010 \text{ M}][SO_4^{2-}]$
- $[SO_4^{2-}] = 1.1 \times 10^{-8} M$

Precipitation reactions

The concentration of Ba^{2+} in a solution is 0.010 M. When $[SO_4^{2-}]$ in the solution reaches 0.015 M, what $[Ba^{2+}]$ remains in the solution?

- $[SO_4^{2-}]$ at equilibrium = 0.015 M
- BaSO₄ (s) \Leftrightarrow Ba²⁺ (aq) + SO₄²⁻ (aq)
- $K_{sp} = [Ba^{2+}][SO_4^{2-}]$
- $1.1 \times 10^{-10} = [Ba^{2+}][0.015 M]$
- $[Ba^{2+}] = 7.3 \times 10^{-9} M$

Precipitation reactions

Suppose you mix 100.0 mL of 0.0200 M BaCl₂ (aq) with 50.0 mL of 0.0300 M Na_2SO_4 (aq). Will BaSO₄ precipitate?

- V = 150.0 mL mol Ba²⁺ = 2.00 x 10⁻³ mol mol SO₄²⁻ = 1.50 x 10⁻³ mol
- $K_{sp} = [Ba^{2+}][SO_4^{2-}] = 1.1 \times 10^{-10} M$
- $[Ba^{2+}] = 0.013 \text{ M}$ $[SO_4^{2-}] = 0.010 \text{ M}$
- Q = $(0.013 \text{ M})(0.010 \text{ M}) = 1.3 \times 10^{-4} > K_{sp}$
- More ions in solution than equilibrium expression allows = BaSO₄ (s) will precipitate

Complex ion equilibria

What is $[Cu^{2+}]$ in a solution prepared by adding 0.00100 mol of $Cu(NO_3)_2$ to 1.00 L of 1.50 M NH_3 (aq)?

•
$$Cu^{2+}$$
 (aq) + 4 NH₃ (aq) \Leftrightarrow [Cu(NH₃)₄]²⁺ (aq) K_f = 2.1 x 10¹³

- K_f very large; begin with the assumption that initially all Cu^{2+} (0.00100 M) is incorporated into the complex ion $[Cu(NH_3)_4]^{2+}$
- $[Cu(NH_3)_4]^{2+}$ then **dissociates back** according to the equilibrium expression • $[Cu(NH_3)_4]^{2+} \Leftrightarrow Cu^{2+}(aq) + 4 NH_3(aq)$ $K = K_f^{-1} = 4.8 \times 10^{-14}$
- $100K < [A]_0$

	[Cu(NH ₃) ₄] ²⁺ (aq)	⇔	Cu ²⁺ (aq)	+ 4 NH ₃ (aq)
I	0.00100 M		0	1.50 M
С	- X		+ x	+ 4x
Е	~0.00100		x	~(1.50)4

•
$$K = \frac{[Cu^{2+}][NH_3]^4}{[[Cu(NH_3)_4]^{2+}]} \rightarrow 4.8 \times 10^{-14} = \frac{x(1.50)^4}{(0.00100)} \rightarrow x = [Cu^{2+}] = 9.5 \times 10^{-18} M$$