- 2. Write the formula and give the name of the conjugate acid of each of the following bases.
 - (a) NH_3

- (b) HCO_3^- (c) Br^-

NH₄⁺ (ammonium) H₂CO₃ (hydrogen carbonate or bicarbonate) HBr (hydrobromic acid)

6. Write balanced equations showing how the HPO₄²⁻ ion of sodium hydrogen phosphate, Na₂HPO₄, can be a Brønsted acid or a Brønsted base.

As a Brønsted acid: HPO_4^{2-} (aq) + H_2O (I) \Leftrightarrow H_3O^+ (aq) + PO_4^{3-}

As a Brønsted base: HPO_4^{2-} (aq) + H_2O (I) \Leftrightarrow OH^- (aq) + $H_2PO_4^-$

4. What are the products of each of the following acidbase reactions? Indicate the acid and its conjugate base and the base and its conjugate acid.

(a)
$$\text{HClO}_4 + \text{H}_2\text{O} \rightarrow \text{H}_3\text{O}^+ + \text{ClO}_4^-$$

(b)
$$NH_4^+ + H_2O \rightarrow H_3O^+ + NH_3$$

(c)
$$\text{HCO}_3^- + \text{OH}^- \rightarrow \text{H}_2\text{O} + \text{CO}_3^{2-}$$

Acid/conjugate base:

8. In each of the following acid-base reactions, identify the Brønsted acid and base on the left and their conjugate partners on the right.

```
(a) C_5H_5N(aq) + CH_3CO_2H(aq) \Longrightarrow
base acid C_5H_5NH^+(aq) + CH_3CO_2^-(aq)
(b) N_2H_4(aq) + HSO_4^-(aq) \Longrightarrow
base acid N_2H_5^+(aq) + SO_4^{2-}(aq)
(c) [Al(H_2O)_6]^{3+}(aq) + OH^-(aq) \Longrightarrow
acid [Al(H_2O)_5OH]^{2+}(aq) + H_2O(\ell)
conjugate base conjugate acid
```

9. An aqueous solution has a pH of 3.75. What is the hydronium ion concentration of the solution? Is it acidic or basic?

$$[H_3O^+]=10^{-3.75}=1.8 \times 10^{-4}$$
 acidic

10. A saturated solution of milk of magnesia, Mg(OH)₂, has a pH of 10.52. What is the hydronium ion concentration of the solution? What is the hydroxide ion concentration? Is the solution acidic or basic?

$$[H_3O^+]=10^{-10.52} = 3.0 \times 10^{-11}$$

pOH = 14.00 - 10.52 = 3.48
 $[OH^-]=10^{-3.48}=3.3 \times 10^{-4}$
basic

14. The pH of a solution of Ba(OH)₂ is 10.66 at 25 °C. What is the hydroxide ion concentration in the solution? If the solution volume is 125 mL, what mass of Ba(OH)₂ must have been dissolved?

pOH =
$$14.00 - 10.66 = 3.34$$

[OH⁻] = $10^{-3.34} = 4.6 \times 10^{-4}$

$$0.125 L \times \frac{4.6 \times 10^{-4} \ mol \ OH^{-}}{1 \ L} \times \frac{1 \ mol \ Ba(OH)_{2}}{2 \ mol \ OH^{-}} \times \frac{171.34 \ g}{1 \ mol \ Ba(OH)_{2}} = 4.9 \ mg \ Ba(OH)_{2}$$

16. Several acids are listed here with their respective equilibrium constants.

$$\begin{split} HF(aq) \, + \, H_2O(\ell) & \Longleftrightarrow H_3O^+(aq) \, + \, F^-(aq) \\ K_a &= 7.2 \times 10^{-4} \\ HPO_4^{2-}(aq) \, + \, H_2O(\ell) & \Longleftrightarrow H_3O^+(aq) \, + \, PO_4^{3-}(aq) \\ K_a &= 3.6 \times 10^{-13} \\ CH_3CO_2H(aq) \, + \, H_2O(\ell) & \Longleftrightarrow H_3O^+(aq) \, + \, CH_3CO_2^-(aq) \\ K_a &= 1.8 \times 10^{-5} \end{split}$$

- (a) Which is the strongest acid? Which is the weakest acid?
- (b) What is the conjugate base of the acid HF?
- (c) Which acid has the weakest conjugate base?
- (d) Which acid has the strongest conjugate base?

HF is the strongest acid. F⁻is the weakest base (conjugate base of HF). HF has the weakest conjugate base. HPO $_4^{2-}$ has the strongest conjugate base.

Sodium carbonate is a base derived from a diprotic acid. Write a chemical equilibrium expression for each of the two successive base reactions with water.

$$CO_3^{2-}$$
 (aq) + H_2O (I) \Leftrightarrow HCO_3^- (aq) + OH^- (aq)

$$HCO_3^-(aq) + H_2O(I) \Leftrightarrow H_2CO_3(aq) + OH^-(aq)$$

21. If each of the salts listed here were dissolved in water to give a 0.10 M solution, which solution would have the highest pH? Which would have the lowest pH?

(a) Na_2S

(d) NaF

(a) Na₂S (d) NaF (b) Na₃PO₄ (e) NaCH₃CO₂

(c) NaH₉PO₄

(f) AlCl₃

Acidic ions: Al³⁺ (really exists as Al(H_2O)₆³⁺ in water, $K_a = 7.9 \times 10^{-6}$)

Neutral ions: Na⁺, Cl⁻

Basic ions (in order of increasing strength): S^{2-} ($K_b = 1 \times 10^5$) PO_4^{3-} ($K_b = 2.8 \times 10^{-2}$), CH_3COO^- ($K_b = 5.6 \times 10^{-10}$),

 F^- ($K_b = 1.4 \times 10^{-11}$)

 $H_2PO_4^-$ is amphiprotic. Its K_a is 6.2 x 10^{-8} and its K_b is 1.3 x 10^{-12} . Since its $K_a > K_b$, it is acidic.

Given same concentration of salts (and acidic/basic cations and anions): the salt containing the ion with the highest K_a (AlCl₃) would have the lowest pH. The salt containing the ion with the highest K_b (Na₂S) would have the highest pH.

 $AlCl_3 < NaH_2PO_4 < NaF < NaCH_3COO < Na_3PO_4 < Na_2S$ Lowest pH highest pH

- **36.** For each of the following reactions, predict whether the equilibrium lies predominantly to the left or to the right. Explain your predictions briefly.
 - (a) $H_2S(aq) + CO_3^{2-}(aq) \iff HS^-(aq) + HCO_3^-(aq)$
 - (b) $HCN(aq) + SO_4^{2-}(aq) \rightleftharpoons CN^-(aq) + HSO_4^-(aq)$
 - (c) $SO_4^{2-}(aq) + CH_3CO_2H(aq) \rightleftharpoons$ $HSO_4^{-}(aq) + CH_3CO_2^{-}(aq)$

 H_2S ($K_a = 1 \times 10^{-7}$) is a stronger acid than HCO_3^- ($K_a = 4.8 \times 10^{-11}$). Equilibrium lies to the **right**. HCN ($K_a = 4.0 \times 10^{-10}$) is a weaker acid than HSO_4^- ($K_a = 1.2 \times 10^{-2}$). Equilibrium lies to the **left**. CH_3COOH ($K_a = 1.8 \times 10^{-5}$) is a weaker acid than HSO_4^- ($K_a = 1.2 \times 10^{-2}$). Equilibrium lies to the **left**.

- **63.** For each of the following cases, decide whether the pH is less than 7, equal to 7, or greater than 7.
 - (a) Equal volumes of 0.10 M acetic acid, CH₃CO₂H, and 0.10 M KOH are mixed.
 - (b) 25 mL of 0.015 M NH₃ is mixed with 25 mL of 0.015 M HCl.
 - (c) 150 mL of 0.20 M HNO₃ is mixed with 75 mL of 0.40 M NaOH.
 - a. pH > 7 (product CH_3COO^- reacts with H_2O to produce CH_3COOH and OH^-)
 - **b.** pH < 7 (product NH_4^+ reacts with H_2O to produce NH_3 and H_3O^+)
 - c. pH = 7 (product neutral ions Na⁺ and NO₃⁻ and H₂O)

Calculations with K_a and K_b

• Calculate the pH of a 0.020 M solution of benzoic acid (C_6H_5COOH) given that $K_a = 6.3 \times 10^{-5}$ for the acid.

	C ₆ H ₅ COOH	+ H ₂ O	⇔	C ₆ H ₅ COO⁻	+ H ₃ O ⁺
1	0.020 M			0	0
С	~ 0			+ x	+ x
Е	~ 0.020 M			X	X

 $100(K_a) < A_0$, so can ignore – x

$$K_a = \frac{[C_6 H_5 COO^-][H_3 O^+]}{[C_6 H_5 COOH]} \rightarrow 6.3 \times 10^{-5} = \frac{x^2}{0.020} \rightarrow x = [H_3 O^+] = 1.1 \times 10^{-3} \text{ M}$$

pH = $-\log[H_3 O^+] = 2.95$

pH of the solution of Na₂CO₃

The CO_3^{2-} ion is a base in water, forming the HCO_3^{-} ion, which in turn can form H_2CO_3 .

 $CO_3^{2-}(aq) + H_2O(I) \Leftrightarrow HCO_3^{-}(aq) + OH^{-}(aq)$

 $K_{b1} = 2.1 \times 10^{-4}$

 HCO_3^- (aq) + H_2O (I) \Leftrightarrow H_2CO_3 (aq) + OH^- (aq) $K_{b2} = 2.4 \times 10^{-8}$

What is the pH of a 0.10 M solution of Na_2CO_3 ? What are the $[CO_3^{2-}]$, $[HCO_3^{-}]$ and $[H_2CO_3]$?

	CO ₃ ²⁻	+ H ₂ O	⇔	HCO ₃ -	+ OH ⁻
I	0.10 M			0	0
С	~0			+ x	+ x
E	0.10 M			X	X

$$K_{b1} = \frac{[HCO_3^-][OH^-]}{[CO_3^{2-}]} \rightarrow 2.1 \times 10^{-4} = \frac{x^2}{0.10} \rightarrow x = [HCO_3^-] = [OH^-] = 4.6 \times 10^{-3} M$$

pOH =
$$-\log(4.6 \times 10^{-3} \text{ M}) = 2.34 \rightarrow \text{pH} = 14.00 - 2.34 = 11.66$$

pH of the solution of Na₂CO₃

The CO_3^{2-} ion is a base in water, forming the HCO_3^{-} ion, which in turn can form H_2CO_3 .

$$CO_3^{2-}$$
 (aq) + H_2O (I) \Leftrightarrow HCO_3^{-} (aq) + OH^{-} (aq)

$$K_{b1} = 2.1 \times 10^{-4}$$

$$HCO_3^-(aq) + H_2O(I) \Leftrightarrow H_2CO_3(aq) + OH^-(aq)$$
 $K_{b2} = 2.4 \times 10^{-8}$

$$K_{h2} = 2.4 \times 10^{-8}$$

What is the pH of a 0.10 M solution of Na₂CO₃? What are the [CO₃²⁻], [HCO₃⁻] and [H₂CO₃]?

	HCO ₃ -	+ H ₂ O	⇔	H ₂ CO ₃	+ OH⁻
1	4.6 x 10 ⁻³ M			0	4.6 x 10 ⁻³
С	~0			+ x	~0
E	4.6 x 10 ⁻³ M			Х	4.6 x 10 ⁻³

$$[CO_3^{2-}] \sim 0.10 \text{ M}$$

$$[HCO_3^-] \sim 4.6 \times 10^{-3} M$$

$$[H_2CO_3] \sim 2.4 \times 10^{-8} M$$

$$K_{b2} = \frac{\left[H_2CO_3\right][OH^-]}{[HCO_3^-]} \rightarrow 2.4 \times 10^{-8} = \frac{(4.6 \times 10^{-3})x}{4.6 \times 10^{-3}} \rightarrow x = \left[H_2CO_3\right] = [OH^-] = 2.4 \times 10^{-8} M$$