Which substance has the higher entropy under standard conditions at 25 °C? Explain your reasoning.

- NO₂ (g) or N₂O₄ (g)
- I₂ (g) or I₂ (s)
- NO_2 is a smaller molecule than N_2O_4 (more order in N_2O_4) so N_2O_4 has the higher entropy (more possible microstates)
- The solid state has more order than the gas state, so I₂ (g) has the higher entropy

Using standard molar entropies, calculate the standard entropy

changes in the following processes

• $C_2H_5OH(I) \rightarrow C_2H_5OH(g)$

• $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

Substance	S° (J K ⁻¹ mol ⁻¹)
C ₂ H ₅ OH (I)	160.7
C ₂ H ₅ OH (g)	282.70
N ₂ (g)	191.56
H ₂ (g)	130.7
NH ₃ (g)	192.77

- $\Delta S^{\circ} = S^{\circ}_{products} S^{\circ}_{reactants} = 282.70 \text{ J K}^{-1} \text{ mol}^{-1} 160.7 \text{ J K}^{-1} \text{ mol}^{-1} = +122.0 \text{ J K}^{-1} \text{ mol}^{-1}$
- $\Delta S^{\circ} = S^{\circ}_{products} S^{\circ}_{reactants} = 2(192.77) J K^{-1} mol^{-1} [191.56 + 3(130.7)] J K^{-1} mol^{-1} = -198.1 J K^{-1} mol^{-1}$

Calculate ΔS°_{universe} for the process of dissolving NaCl in water at 298 K.

NaCl (s) → NaCl (aq)

• $\Delta S^{\circ}_{universe}$	$=-\frac{\Delta H^{\circ}_{sys}}{T}+\Delta S^{\circ}_{sys}$
---------------------------------	---

Substance	ΔH° _f (kJ mol ⁻¹)	S° (J K ⁻¹ mol ⁻¹)
NaCl (s)	-411.12	72.11
NaCl (aq)	-407.27	115.5

- $\Delta S^{\circ}_{sys} = 115.5 \text{ J K}^{-1} \text{ mol}^{-1} 72.11 \text{ J K}^{-1} \text{ mol}^{-1} = +43.4 \text{ J K}^{-1} \text{ mol}^{-1}$
- $\Delta H^{\circ}_{sys} = -407.27 \text{ kJ mol}^{-1} (-411.12 \text{ kJ mol}^{-1}) = +3.85 \text{ kJ mol}^{-1}$

•
$$\Delta S^{\circ}_{universe} = -\frac{3850 \ J \ mol^{-1}}{298 \ K} + 43.4 \ J K^{-1} mol^{-1} = +30.5 \ J K^{-1} mol^{-1}$$

Calculate ΔG° for the formation of methane from carbon and hydrogen at 298 K using tabulated values of ΔH°_{f} and S° . Is the reaction product-favored or reactant-favored at equilibrium?

• C (s) + 2
$$H_2$$
 (g) \rightarrow C H_4 (g)

Substance	ΔH° _f (kJ mol ⁻¹)	S° (J K ⁻¹ mol ⁻¹)
C (s)	0	5.6
H ₂ (g)	0	130.7
CH ₄ (g)	-74.87	186.26

- $\Delta H^{\circ} = -74.87 \text{ kJ mol}^{-1}$
- $\Delta S^{\circ} = 186.26 \text{ J K}^{-1} \text{ mol}^{-1} [5.6 \text{ J K}^{-1} \text{ mol}^{-1} + 2(130.7 \text{ J K}^{-1} \text{ mol}^{-1})] = -80.7 \text{ J K}^{-1} \text{ mol}^{-1}$
- $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ} = -74.87 \text{ kJ mol}^{-1} (298 \text{ K})(-0.0807 \text{ kJ K}^{-1} \text{ mol}^{-1}) = -50.8 \text{ kJ mol}^{-1}$
- Product-favored

Calculate ΔG° for the combustion of one mole of methane using ΔG°_{f} values of the products and reactants. Is the reaction product-favored or reactant-favored at equilibrium?

• $CH_4(g) + 2 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g)$

Substance	ΔG° _f (kJ mol ⁻¹)
CH ₄ (g)	-50.8
O ₂ (g)	0
CO ₂ (g)	-394.359
H ₂ O (g)	-228.59

•
$$\Delta G^{\circ} = -394.359 \text{ kJ mol}^{-1} + 2(-228.59 \text{ kJ mol}^{-1}) - (-50.8 \text{ kJ mol}^{-1}) =$$

- -800.7 kJ mol⁻¹
- Product-favored

The decomposition of liquid Ni(CO)₄ to produce Ni metal and CO has a ΔG° value of 40 kJ at 25 °C. Use values of ΔH° and S° for the reactants and products to estimate the temperature at which the reaction becomes product-favored at equilibrium.

• Ni(CO)₄ (I) \rightarrow Ni (s) + 4 CO (g)

Substance	ΔH° _f (kJ mol ⁻¹)	S° (J K ⁻¹ mol ⁻¹)
Ni(CO) ₄ (I)	-632.0	320.1
Ni (s)	0	29.87
CO (g)	-110.525	197.674

- $\Delta H^{\circ} = 4(-110.525 \text{ kJ mol}^{-1}) (-632.0 \text{ kJ mol}^{-1}) = +189.9 \text{ kJ mol}^{-1}$
- $\Delta S^{\circ} = 4(197.674 \text{ J K}^{-1} \text{ mol}^{-1}) + 29.87 \text{ J K}^{-1} \text{ mol}^{-1} 320.1 \text{ J K}^{-1} \text{ mol}^{-1} = +500.5 \text{ J K}^{-1} \text{ mol}^{-1}$
- Entropically favored process (favored at high temperatures)
- The reaction becomes favorable at equilibrium once $\Delta G = \Delta H T\Delta S \leq 0$
- $\Delta H \leq T\Delta S \rightarrow T \geq (189.9 \text{ kJ mol}^{-1})/(0.5005 \text{ kJ K}^{-1} \text{ mol}^{-1}) \rightarrow T \geq 379.4 \text{ K}$

Determine ΔG° for the formation of 1.00 mol of NH₃ (g) from nitrogen and hydrogen and use this value to calculate K for this reaction at 25 °C.

- $N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$
- For one mole of NH₃ (g), $\Delta G^{\circ} = -16.37$ kJ mol⁻¹

•
$$\Delta G = -RT \ln K \rightarrow lnK = -\frac{-16370 \ J \ mol^{-1}}{(8.314 \ JK^{-1} mol^{-1})(298.15 \ K)} \rightarrow K = 738$$

The value of K_{sp} for AgCl (s) at 25 °C is 1.8 x 10⁻¹⁰. Determine ΔG ° for the process Ag^+ (aq) + Cl^- (aq) \Leftrightarrow AgCl (s) at 298.15 K.

- $K = K_{sp}^{-1} = 5.6 \times 10^9$
- $\Delta G^{\circ} = -RTInK = -(8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298.15 \text{ K})ln(5.6 \text{ x } 10^9) = -55.62 \text{ kJ mol}^{-1}$

ICI (g) can be decomposed into I_2 (g) and CI_2 (g). 2 ICI (g) \rightarrow I_2 (g) + CI_2 (g)

Substance	ΔG° _f (kJ mol ⁻¹)
ICI (g)	-5.73
I ₂ (g)	19.327
Cl ₂ (g)	0

Calculate ΔG° for this reaction at 298 K using ΔG°_{f} values of the products and reactants. Is this reaction reactant-favored or product-favored at equilibrium?

- $\Delta G^{\circ} = 19.327 \text{ kJ mol}^{-1} 2(-5.73 \text{ kJ mol}^{-1}) = +30.79 \text{ kJ}$
- Reactant-favored

ICl (g) can be decomposed into I_2 (g) and Cl_2 (g).

$$2 |C|(g) \rightarrow I_2(g) + CI_2(g)$$

Calculate the value of ΔG at 298 K for this reaction if the reactant and products are mixed with the following partial pressures: 1.0 atm ICl, 1.0 x 10^{-3} atm I₂ and 1.0 x 10^{-3} atm Cl₂. Is the reaction spontaneous under these conditions?

•
$$Q = \frac{P_{I_2}P_{Cl_2}}{P_{ICl}^2} = \frac{(0.0010 \text{ atm})(0.0010 \text{ atm})}{(1.0 \text{ atm})^2} = 1.0 \times 10^{-6}$$

- $\Delta G = \Delta G^{\circ} + RTInQ = (30790 \text{ J mol}^{-1}) + (8.314 \text{ J K}^{-1} \text{ mol}^{-1})(298 \text{ K})ln(1.0 \text{ x } 10^{-6})$ = **-3.44 kJ mol**⁻¹
- Spontaneous