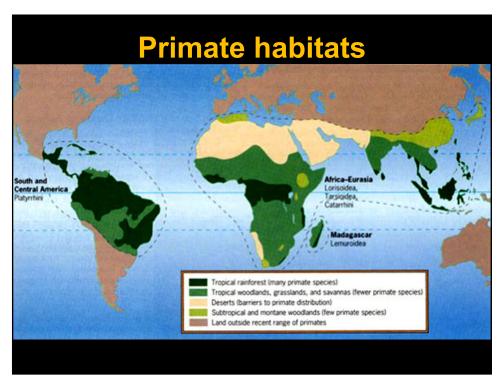
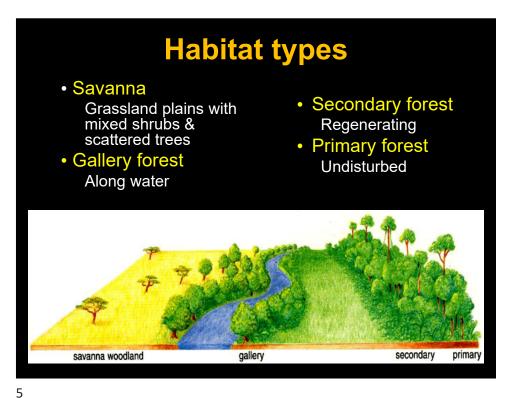


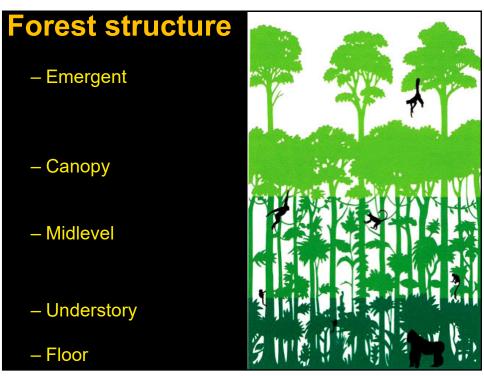
Primate ecology

 Study of the interrelationships of plants, animals & the physical environment in which they live


Environment Primates


- Environment influences primate behavior
- Primates influence the ecology of their environments (seed dispersal, etc.)

Topics


- Primate habitats
- Primate diets
- Primate socioecology
 - resources, predation, sociality & mating systems
- Primate behavior
 - Kin selection, altruism, culture

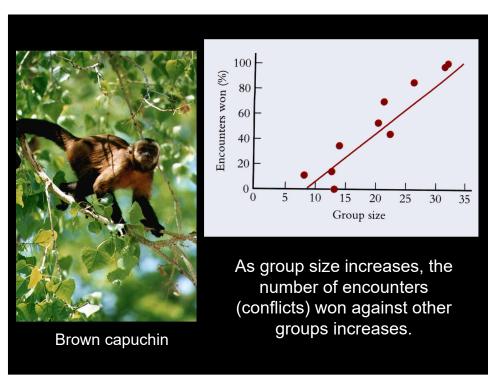
3

J

Primate diets

- Animals: insects, vertebrates (faunivory)
- Fruits (frugivory)
- Seeds
- Flowers & nectar
- Leaves, stems and grass (graminivory)
- Sap and gum (gummivory)
- Underground plant parts: roots, tubers, bulbs, etc.

7

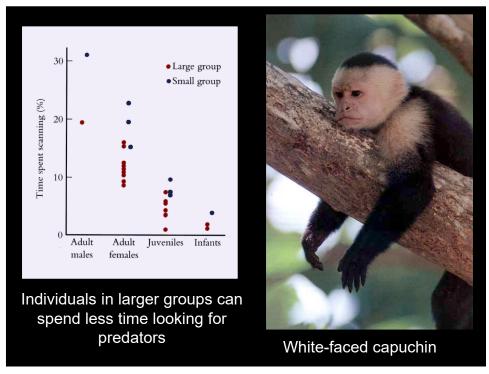

Primate socioecology

- How the interaction between individuals & the environment (both physical and social) they live in influences their social systems
- Basic model: distribution of food →
 distribution of females (and whether they
 group with kin) → distribution of males

Potential benefits of group living

- Foraging benefits
 - Finding food
 - More eyes to find new food patches
 - · Minimize wasted searching
 - Share information
 - Accessing food
 - Cooperate in hunting
 - Cooperate in defense or takeover of food patches

9



Potential benefits of group living

- Predation avoidance benefits
 - -The "selfish herd" effect
 - The "dilution" effect
 - -The "vigilance" effect
 - The "confusion" effect
 - The potential for cooperative defense

11

Potential benefits of group living

- Social benefits
 - -Learning is easier
 - -Finding a mate is easier
 - -Sharing information is easier
 - -Assistance in rearing offspring

Potential costs of group living

- Increased competition over resources (food & mates)
- · Increased risk of disease
- Increased conspicuousness to predators
- Increased conspicuousness to prey
- Increased chance of being cuckolded

15

How big should primate groups be?

Animals should live in groups of sizes that maximize their access to critical resources by:

- Minimizing the amount of competition they face from other individuals in their group
- Maximizing their success in conflicts with other groups, while also
 - minimizing their risks of being preyed upon, and
 - maximizing their chances of successfully reproducing

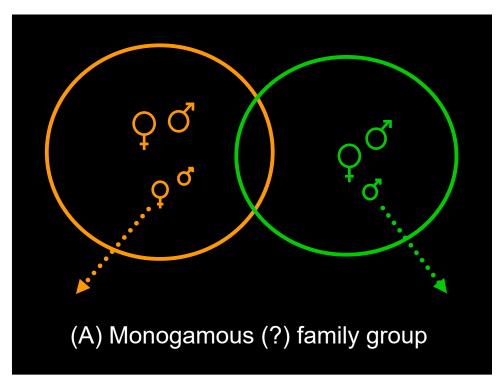
General relationships

Larger groups

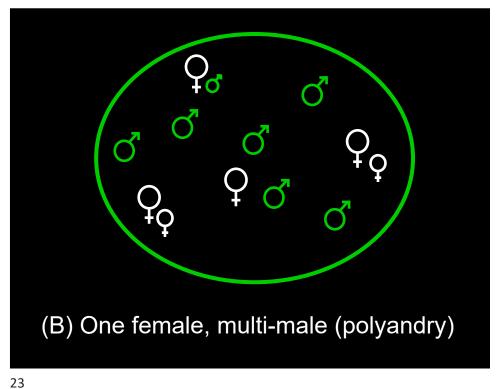
- Terrestrial
- Diurnal
- Frugivorous
- Where predator density is high

Smaller groups

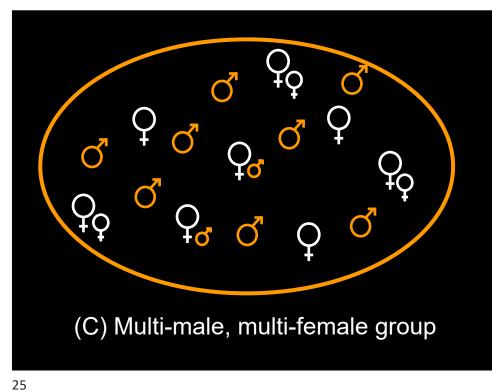
- Arboreal
- Nocturnal
- Folivorous
- Where predator density is low

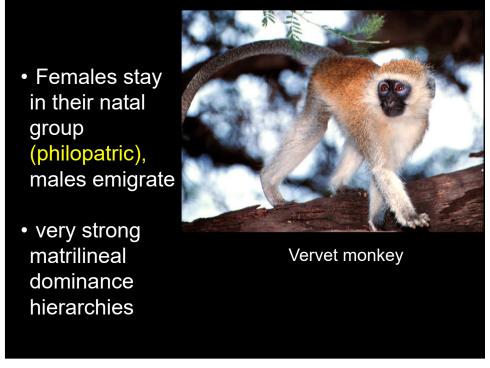

17

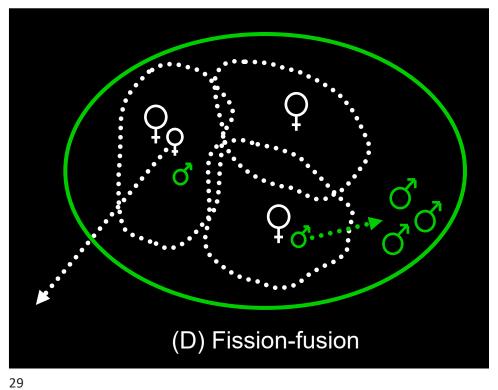
Elements of a social system


- Group size & composition
- Use of the environment
- Mating system
- Nature of intragroup social behavior
- Emigration pattern

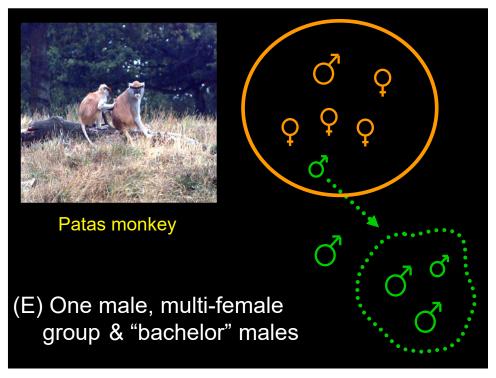
19



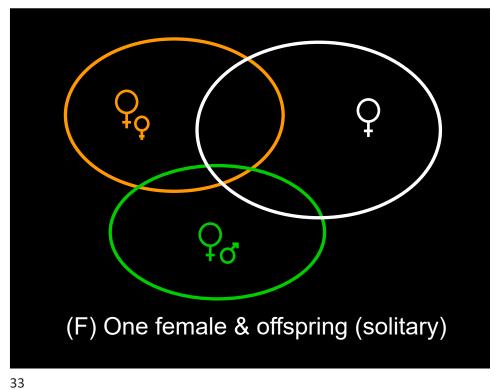


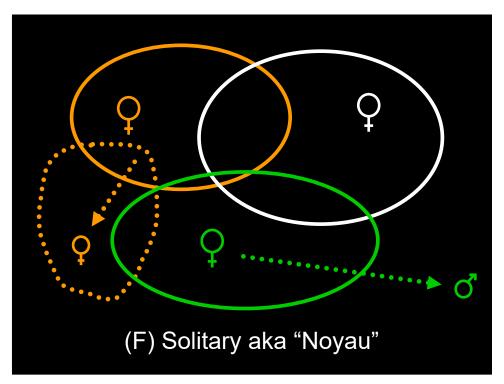

Red colobus monkeys

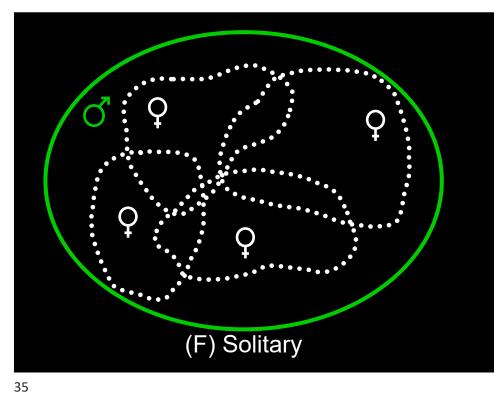
Multi-male, multi-female with female emigration and male philopatry

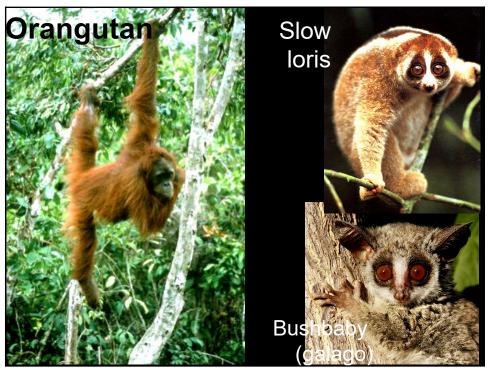

- Females non-relatives spend little time interacting, do not form dominance hierarchies
- Males cooperate more than males usually do, form strong dominance hierarchies

27









What do biologists mean by male and female?

- Remember: evolution is all about (differential) reproductive success
- Sexually reproducing organisms:
 - Small, energetically "cheap" gametes (sperm) ♂
 - Larger, energetically "expensive" gametes (eggs) (that need to be internally gestated in mammals) ♀
 - Differential levels of investment required
 - Often interpreted as a binary division, but...

37

"Biological sex" is not discrete nor binary

- Genetics-gonad-genitalia triad ("3G sex")
 - Diversity and variation within/across the triad
- Sex ≠ gender
 - Gender is socially constructed & varied
 - In humans, terms gender/sex or sex/gender emphasize how the two are intertwined throughout life (DuBois, 2021)
 - In non-human primates, we don't know about gender, and assume sex based on phenotype

Why even bother with it?

- "... all models are wrong, but some are useful. However, the approximate nature of the model must always be borne in mind...." (G. Box, 1987)
 - Approximations are reductive by definition
 - A starting point for understanding & appreciating diversity and variation, because observations that defy expectations are often more interesting and informative
 - important not to conflate common/typical with right/worthy/proper/only way to be

39

Beware of "just so stories"

- Just because a trait is subject to a particular kind of selective pressure now, doesn't mean that is why it evolved!
 - exaptations (e.g. middle ear bones)
 - evolutionary by-product ("spandrel")

Sexual dimorphism

- Both sex and gender exist on a spectrum
- Dimorphism: differences observed across two ends of a spectrum (e.g., small-large)
- Sexual dimorphism: differences observed between sexes in a species
 - E.g. canine size, body size, coloration, behavioral repertoire
 - No difference? Monomorphic
 - More than two variants? Polymorphic

41

Sexual dimorphism

- The degree of sexual dimorphism in a species is usually correlated with (not necessarily caused by!) the level of male-male competition in that species
- Therefore, sexual dimorphism is also correlated with social organization (type of social group)
- Why?

43

Sexual selection

- Differential reproductive success within a sex of any species
- who social animals mate with is not random!

- Classic views of two components to sexual selection:
- Pressure on males to gain access to mates – intrasexual selection
- Pressure on females to choose the right mate – intersexual selection

Intrasexual selection male-male competition

Body mass sexual dimorphism index

- = (female body mass / male body mass) x 100
 - A larger BMSDI (closer to 100) means that males & females are of similar size & suggests a low degree of sexual dimorphism.
 - A smaller BMSDI (closer to 0) means that males are larger than females & suggests a high degree of sexual dimorphism.
 - Generally, a value much higher or lower than 100 suggests that the larger sex has more competition for mates.

47

Sexual dimorphism & mate competition

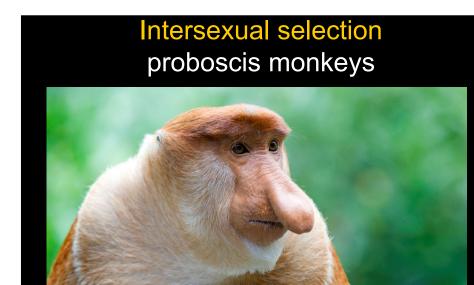
- Gorilla gorilla
 - BMSDI = 42.2
 - Males are much larger than females
 - One-male, multifemale social group structure
 - High male-male competition

Sexual dimorphism & mate competition

- Hylobates lar
 - -BMSDI = 90.5
- Males & females similar in body size (monomorphic)
- Monogam-ish social group structure (with EPCs!)
- Low male-male competition

49

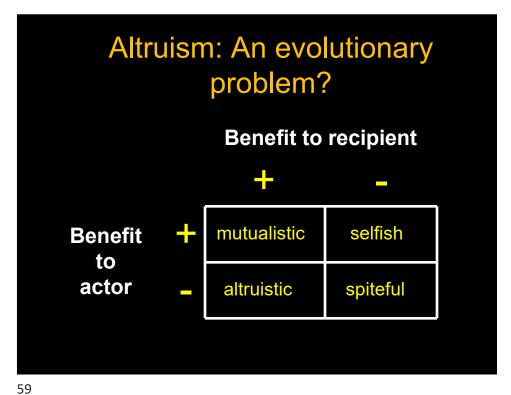
Canine size sexual dimorphism index


- = (female canine size / male canine size) x 100
 - A larger CSSDI (closer to 100) means that male & female canines are of similar size (low degree of sexual dimorphism)
 - A smaller CSSDI (closer to 0) means that male canines are larger than female canines (high degree of sexual dimorphism)
 - Generally, values much higher or lower than 100 suggest that the sex with the larger canines (usually males) has more competition for mates.

51

Female choice

- Earlier research overwhelmingly focused on male-male competition (conspicuous, conforms to Western gender norms)
- Female choice is a major determinant of male reproductive success, even in taxa with high dimorphism and male "monopolization" of females
 - E.g. female baboons may join forces to support the group male against a challenger


Primate behavior

- Why do patterns of behavior (like social grooming & dominance interactions) exist?
- Why do these behaviors take the forms they do?

57

Basic assumptions

- Behavior has some genetic basis (this is NOT genetic determinism!)
- Behavior is subject to the process of evolution by natural selection in the same way as morphology

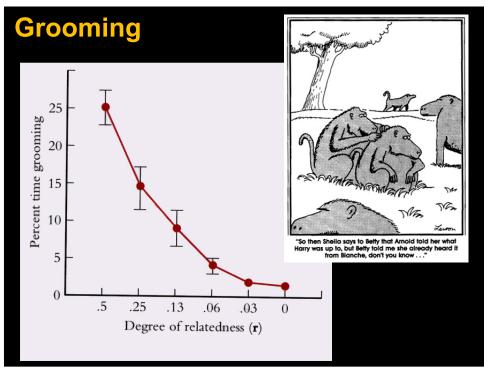
Big question

How can seemingly altruistic behavior evolve through natural selection?

Kin selection

Process by which traits or behaviors arise via natural selection through their effects on the survivorship or reproduction of relatives

61


Inclusive fitness

An individual's total genetic contribution to the next generation

Includes own direct fitness plus indirect fitness devalued by "r"

Inclusive fitness = $DF + IF \times r$

Degree of relatedness The average proportion of gen between two individual	nes shared
<u>Relationship</u>	"r"
full siblings	1/2
half siblings	1/4
parent-offspring	1/2
grandparent-grandchild	1/4
aunt or uncle-niece or nephew	1/4
first cousins	1/8
Two kinds of fitness: direct &	indirect

Hamilton's rule

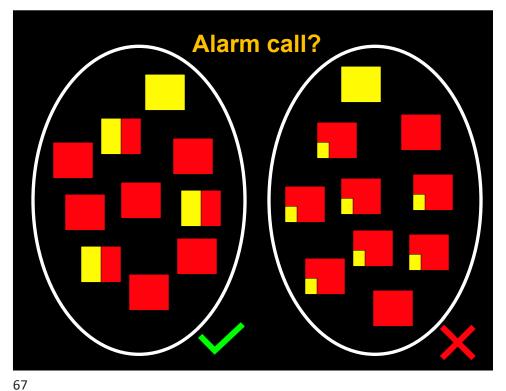
C < Bxr

B = Benefit to recipient

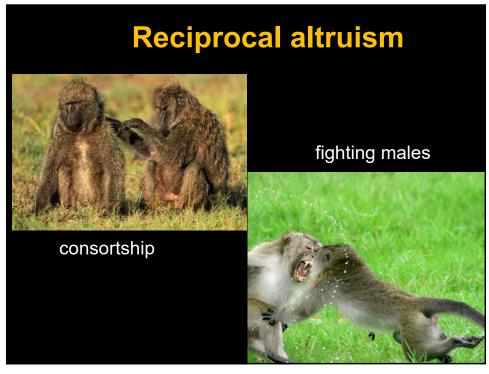
r = degree of relatedness between actor & recipient

C = Cost to actor

65

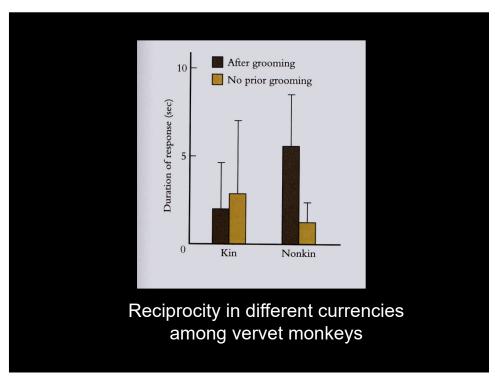


Predators & alarms


Snakes

Eagles

Leopards



Big question Can altruism occur between non-kin?

Reciprocal altruism

- · Certain conditions need to be met
 - Frequent interactions
 - Individual recognition
 - Way of punishing cheaters
 - Long term benefits outweigh costs
- Exchanges can be in different "currencies"

Culture in non-human primates

- First observed in japanese macaques
- A female started washing sweet potatoes – younger individuals picked up that behavior

Imo

Culture in non-human primates

- Tool use (mainly for extractive foraging) observed in many species:
 - capuchins, macaques, baboons (in the wild and captivity)
 - guenons, mangabeys, patas (in captivity)
 - orangutans, chimpanzees, gorillas (in the wild and captivity)

73

Culture in great apes

Orangutans and chimpanzees show regional variation in tool use!

Tool types	Gombe	Mahale	Kibale	Tai	Bossou
Leaf sponge	×		×	×	×
Termite fish	×	×			
Ant dip	×			×	×
Honey dip	×			×	
Nut hammer				×	×
Ant fish		×			
Bee probe				×	
Marrow pick				×	
Pestle pound					×
Gum gouge					×
Algae scoop					×
Hook stick					×
No. of feeding-tool types	4	2	1	6	7

Some interesting facts...

- Gorillas use branches as crutches or planks to cross bodies of water
- Chimpanzees use poles to reach high shelves or to escape zoo enclosures
- Nut-cracking in chimpanzees has an archaeological record
- Chimpanzees use spears to hunt galagos, orangutans use spears to fish!

75

More interesting facts...

A captive chimpanzee collected stones to throw at zoo visitors later – evidence of planning and premeditation!

More interesting facts...

A captive capuchin used a rock it uses to crack nuts to shatter the glass of its enclosure

77

