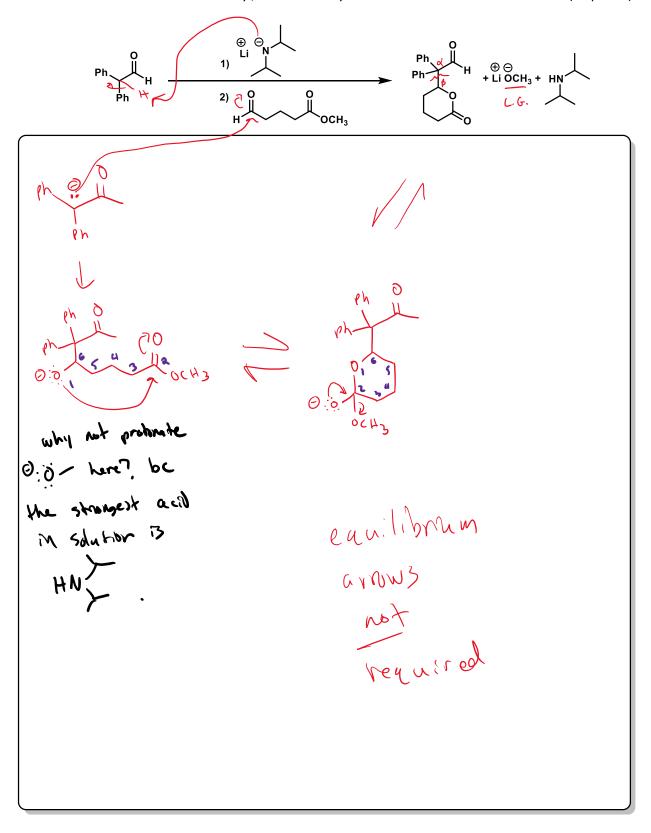

Name: _____

IA																	_0_
1 H 1.008	ПА											ШΑ	IVA	VA	VIA	VIIA	2 He 4.003
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	шв	IVB	VB	VIB	VIIB		VIIB		IB	шв	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K	²⁰ Ca	Sc Sc	22 Ti	23 V	24 Cr	²⁵ Mn	²⁶ Fe	27 C o	28 N i	Cu	30 Z n	31 Ga	Ge	As	34 Se	35 Br	36 Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 ± La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 r 192.2	78 Pt 195.1	79 Au 197.0	80 Hg ^{200.6}	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226.0)	89 ≠ Ac (227)	104 R f	105 Ha	Unh	107 Uns	108	¹⁰⁹ U ne									

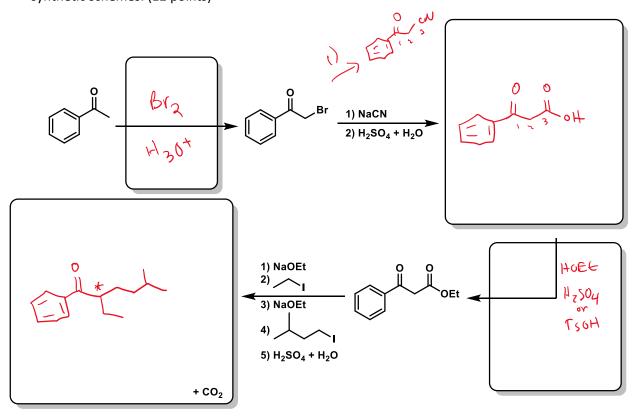
-	* 58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu l
	140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
	⇔ 90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	Ü	Иp	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr l
	232.0	(231)	238.0	(244)	(242)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

pK_a information

1. **Quick Synthesis.** Fill in the boxes with either the correct starting materials, reagents or products. You can ignore stereochemistry for all enolate-derived chemistry, but you should consider stereochemistry for all other chemistry, where appropriate. (21 points)



2. **Acid / Base.** For each acid / base reaction, circle the correct hydrogen that would be deprotonated under the conditions indicated. (8 pts)


.....

5. **Guided Synthesis.** Fill in the missing reagents / intermediates / products to complete the following synthetic scheme. (12 points)

3. **Mechanism.** Provide a step-wise mechanism for the following transformation. *Hint:* the correct mechanism will combine chemistry / mechanisms you learned in both Ch 20 and Ch 21. (15 points)

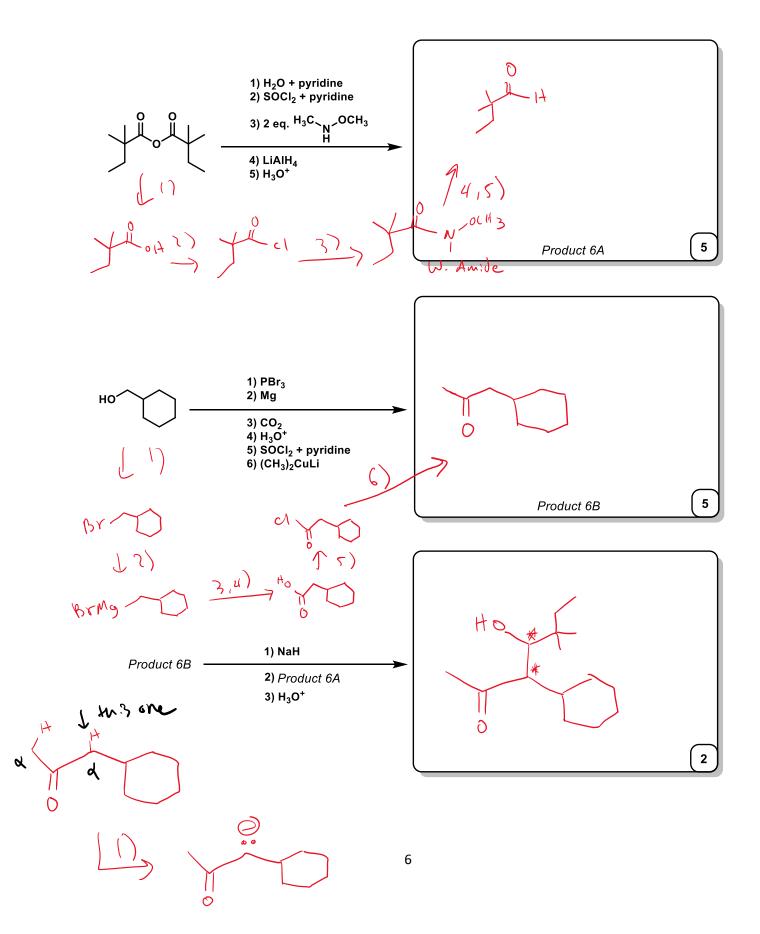
6. **Guided Synthesis.** Fill in the missing reagents / intermediates / products to complete the following synthetic schemes. (12 points)

7. **Multiple Choice.** Select the letter that best answers the questions posed. (10 points)

Which of the following sets of conditions would produce the desired product?

- A. 1) Br₂ + NaOH 2) H₃O⁺
- B. 1) NaOH 2) H₃O⁺
- C. 1) H₃CMgBr 2) H₃O⁺

Which ylide would provide the stereochemical outcome shown below?


What is the best base choice to complete the following transformation?

A. NaOEt

- B. LDA
- C. NaOCH₃

Which reagents would accomplish this reaction?

8. **Less-Guided Synthesis.** First, complete the first two synthetic pathways to determine *Product 6A* and *Product 6B*. Then, in the final box, combine these two products in the manner described to get the final product of the synthesis. (12 points)

9. **Full Synthesis.** The **Desired Product** below can be made from the given **Starting Materials** using reactions we have learned in class. You must use both of the starting materials. Provide a synthesis in the box below. *Hint:* you'll want to alter both of the starting materials before reacting them with each other. (10 points)