
Amino acid tables are at the end of this document.

IA																	0
1 H 1.008	ПА											ШΑ	IVA	VA	VIA	VIIA	He 4.003
3 Li 6.941	Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	шв	IVB	VB	VIB	VIIB		VIIB		В	шв	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K	²⁰ Ca	21 Sc	22 Ti	23 V	24 Cr	²⁵ Mn	²⁶ Fe	27 C o	28 N i	Cu	30 Z n	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
39.10	40.08	44.96	47.90	50.94	52.00	54.94	55.85	58.93	58.70	63.55	65.38	69.72	72.59	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Z r 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag	Cd 112.4	In 114.8	Sn	Sb	Te 127.6	126.9	Xe 131.3
55	56	57 ∗	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs 132.9	Ba	La 138.9	Hf 178.5	Ta 180.9	W 183.9	Re 186.2	Os	lr 192.2	Pt 195.1	Au 197.0	Hg 200.6	П 204.4	Pb 207.2	Bi 209.0	Po (209)	(210)	Rn (222)
87 Fr (223)	88 Ra (226.0)	89 ** Ac (227)	104 Rf	105 Ha	106	107 U ns	108	109 U ne		137.0	200.0	204.4	201.2	200.0	(200)	(210)	(222)

±	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dν	Ho	Er	Tm	Yb	Lu
	40.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9		164.9	167.3	168.9	173.0	175.0
tut	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(244)	(242)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

1. **Quick Synthesis.** Fill in the boxes with either the correct reagents or products. Please be sure to indicate stereochemistry (where appropriate) and steps, if needed.

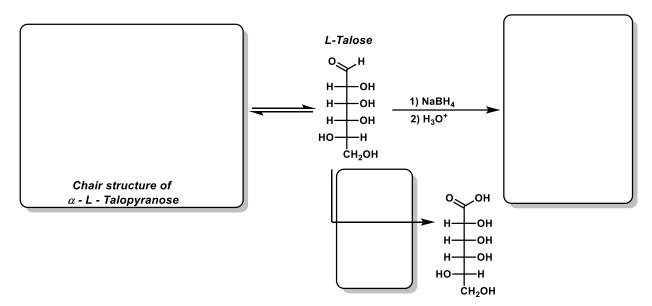
Mechanism. Provide an arrow O OH + NH ₂	cy ^N c _N	0	_Cy

3.	Flawed Synthesis. Below you will find a synthesis that will not ultimately lead to the	Desired Product.
	In the first box, describe the flaw(s) inherent in the synthetic route presented. In	າ the second box,
	provide a new synthetic route that will lead to the Desired Product .	

4. **Peptide Structure.** In the box, provide the major form of the following tetrapeptide at the indicated pH: Pro – Cys – Asn – His.

1 H 1.008	ПА											ШΑ	IVA	VA	VIA	VIIA	0 He
3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
11 Na 22.99	12 Mg 24.31	шв	IVB	VB	VIB	VIIB		VIIIB		IB	ШВ	13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 CI 35.45	18 Ar 39.95
19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.90	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.70	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc (98)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57 ★ La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 r 192.2	78 Pt 195.1	79 Au 197.0	80 Hg ^{200.6}	81 T 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226.0)	89 ⇔ Ac (227)	104 Rf	105 Ha	Unh	107 Uns	108	109 U ne									

* 58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dν	Ho	Er	Tm	Yb	Lu l
140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
₩ 90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Νp	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr l
232.0	(231)	238.0	(244)	(242)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)


5. **Guided Synthesis.** Fill in the boxes with the missing starting material, intermediate and final product of the synthesis below.

$$\begin{array}{c} & & & \\ & &$$

6. **Isoelectric Point.** Using the charts found at the end of the exam, provide the zwitter ion form of each of the following amino acids / peptide chains, in addition to their respective isoelectric points (12 pts)

Arginine:	Aspartic Acid:	Lysine - Serine:
pl:	pl:	pl:

7. **Carbohydrate Structure.** First, provide the chair structure of the indicate pyranose sugar based on the information provided. (hint – start with a Haworth projection) Then, provide either the reagents or the product of the two reactions stemming from the acyclic sugar. (10 points)

Lysine	- Methionine	- Valine	

8. Peptide Synthesis. Provide a complete synthesis of the following tripeptide starting from the

TABLE **25.1** THE STRUCTURES OF THE TWENTY NATURALLY OCCURRING AMINO ACIDS THAT ARE FOUND IN PROTEINS

Name	Structure	Abbreviation	Name Structure	Abbreviation
Amino acids w	vith nonpolar side chains		Amino acids with polar side chains	
Glycine	H OH	Gly G	Asparagine H ₂ N NH ₂	OH Asn N
Alanine	H ₃ C OH	Ala A	Glutamine H ₂ N NH	OH Gln Q
Valine	NH ₂	Val V	Serine HO NH ₂ OH	Ser S
	NH ₂		Threonine OH OH NH ₂	Thr T
Leucine	OH NH ₂	Leu L	Tyrosine	OH Tyr Y
Isoleucine	NH ₂	Ile I	NH ₂	OH Cys C
Methionine	S OH	- Met M	Amino acids with acidic side chains Aspartic acid HO NH ₂	OH Asp D
Proline	ОН	Pro P	Glutamic acid HO HO Amino acids with basic side chains	OH Glu E
Phenylalanine	NH ₂	H Phe F		OH Arg R
Tryptophan		OH Trp W	Histidine NNH NH2	DH His H
турюрнан	N NH ₂		Lysine H_2N NH_2	OH Lys K

TABLE 25.2	THE P $K_{\rm a}$ VALUES FOR TWENTY	NATURALLY OCCUR	RING AMINO ACIDS
AMINO ACID	lpha-COOH	α -NH $_3$ ⁺	SIDE CHAIN
Alanine	2.34	9.69	_
Arginine	2.17	9.04	12.48
Asparagine	2.02	8.80	_
Aspartic acid	1.88	9.60	3.65
Cysteine	1.96	10.28	8.18
Glutamic acid	2.19	9.67	4.25
Glutamine	2.17	9.13	_
Glycine	2.34	9.60	_
Histidine	1.82	9.17	6.00
Isoleucine	2.36	9.60	_
Leucine	2.36	9.60	_
Lysine	2.18	8.95	10.53
Methionine	2.28	9.21	_
Phenylalanine	1.83	9.13	_
Proline	1.99	10.60	_
Serine	2.21	9.15	_
Threonine	2.09	9.10	_
Tryptophan	2.83	9.39	_
Tyrosine	2.20	9.11	10.07
Valine	2.32	9.62	_