06/07/23

Balance the following chemical reaction: C_8H_{18} (I) + $O_2(g) \rightarrow CO_2(g) + H_2O$ (I)

If you have 1.75 kg of C_8H_{18} , how many kg of oxygen gas do you need to react with all of the C_8H_{18} ? And how much CO_2 will form if that reaction occurs?

If you react 1.25 kg of C₈H₁₈ with 575 grams of O₂, how much water will be formed?

How much sodium nitrate do you need to make 750 mL of a 0.28 M sodium nitrate solution?

If you combine 352 grams of $C_6H_{12}O_6$ with enough water to make 1.50 L of solution, what is the molarity of this solution?

If you combine 79.5 grams of sodium oxalate with enough water to make 2.5 L of solution, what will be the concentration of the **sodium ion** in this solution?

If you have 500 mL of a 0.45 M solution of magnesium nitrate, how do you make 250 mL of a 0.18 M magnesium nitrate solution?

You combine 350 mL of 0.25 M aluminum nitrate with 425 mL of 0.15 M ammonium carbonate. a) Write the balanced total and net ionic equations for what happens

b) How many grams of precipitate form?

0.35L × 0.75 mol
$$Al^{3+}$$
 = 0.0875 mol Al^{3+}

0.475L × 0.15 nol $O3^{2-}$ = 0.06375 mol $O3^{2-}$

To which Wall Al^{3+} requires 0.0875 mol Al^{3+} × $\frac{3 mol (O3^{2-})}{2 mol Al^{3+}}$ = 0.13 mol $O3^{2-}$

Not enough $O3^{2-}$ 90 $O3^{2-}$ 15 limiting

0.06375 mol $O3^{2-}$ × $\frac{1 mol Al7(O3)_3}{3 mol}$ × $\frac{2349 Al2(O3)_3}{3 mol}$ = 4.479 $Al2(O3)_3$

c) What is the concentration of each ionic species in solution after the mixing occurs?

$$0.06375 \text{ mol } (03^{2} \times 2 \text{ mol } 41^{3+}) = 0.0475 \text{ mol } 41^{3+} : n \text{ ppc.:p}$$

$$0.0875 \text{ mol } 41^{3+} = 0.0475 \text{ mol } 41^{3+} = 0.045 \text{ mol } 41^{3+} : n \text{ sol'} n$$

$$(41^{3+}) = \frac{0.045 \text{ mol}}{0.3756} = 0.058M$$