CHEM 103 R&R 5 5 June 2024 Adapted from a 9 June 2021 document

Adapted from a 9 June 2021 document
1. Quinone, which is used in the dye industry and in photography, is an organic compound containing only C, H, and O. What is the empirical formula of quinone if you find that 0.105 g of quinone gives 0.257 g CO_2 and 0.0350 g H_2O when burned completely? Given a molecular weight of approximately 108 g mol ⁻¹ , what is its molecular formula?
2. Aqueous sodium sulfide is mixed with iron(III) chloride to produce iron(III) sulfide and sodium chloride. Please make sure to include all states of matter in the equations.
Balanced chemical equation:
Total ionic equation:
Net ionic equation:

3. Balance the following equations:

a.
$$NH_4NO_2 \rightarrow N_2 + H_2O$$

b.
$$P_4O_{10} + H_2O \rightarrow H_3PO_4$$

c.
$$HCl + CaCO_3 \rightarrow CaCl_2 + CO_2 + H_2O$$

d.
$$C_6H_{14} + O_2 \rightarrow CO_2 + H_2O$$

4. Write the overall balanced, total ionic, and net ionic equations for the following reactions:

a.
$$HCH_3CO_2$$
 (aq) + NH_3 (aq) \rightarrow

b. Aqueous ammonia reacts with aqueous hydrochloric acid

c. Aqueous solutions of aluminum nitrate and potassium phosphate

(along includi	reaction of ethane gas (C_2H_6) with chlorine gas produces C_2H_5Cl as its main product with HCl). In addition, the reaction invariably produces a variety of other minor products $C_2H_4Cl_2$, $C_2H_3Cl_3$, and others. Naturally, the production of these minor products as the yield of the main product. Calculate the percent yield of C_2H_5Cl if the reaction of ethane with 650 g chlorine produced 490 g C_2H_5Cl .
	olution is prepared by dissolving 10.8 g ammonium sulfate in enough water to make 100. stock solution. A 10.00 mL sample of this stock solution is added to 50.00 mL of water.
	a. Calculate the concentration of the overall solution, ammonium ions, and sulfate ions.
	b. In the above scenario, would your answers be the same if the problem instead had 10.8 g ammonium sulfate dissolved in 100.0 mL water? Why or why not?

7. A 100.0 mL sample of 0.200 M aqueous potassium hydroxide is mixed with 100.0 mL of 0.200 M aqueous magnesium nitrate.		
a. Write a balanced chemical equation, total ionic, and net ionic equation for the reaction.		
b. What mass of precipitate forms?		
c. Calculate the concentration of each ion remaining in solution after precipitation is complete.		
8. A solution is prepared by dissolving 0.5842 g oxalic acid ($H_2C_2O_4$) in enough water to make 100.0 mL of solution. A 10.00 mL portion of this solution is then diluted to a final volume of 250.0 mL. What is the final molarity of the oxalic acid solution?		