CHEM 103 R&R 6 6 June 2024 Adapted from a 10 June 2020 document

1. Vanillin, the dominant flavoring in vanilla, contains C, H, and O. When 1.05 g of this substance is completely combusted, 2.43 g CO_2 and 0.50 g H_2O are produced. What is the empirical formula of vanillin?

2. A mixture of N_2 (g) and H_2 (g) reacts in a closed container to form ammonia, NH_3 (g). The reaction ceases before either reactant has been totally consumed. At this stage, 3.0 mol N_2 , 3.0 mol N_2 , and 3.0 mol N_3 are present. How many moles of N_2 and N_2 were present originally?

3. A mixture containing $KCIO_3$, $KHCO_3$, K_2CO_3 , and KCI was heated, producing CO_2 , O_2 , and H_2O gases according to the following equations:

$$2 \text{ KCIO}_3 \text{ (s)} \rightarrow 2 \text{ KCI (s)} + 3 \text{ O}_2 \text{ (g)}$$

$$2 \text{ KHCO}_3 \text{ (s)} \rightarrow \text{K}_2\text{O (s)} + \text{H}_2\text{O (g)} + 2 \text{ CO}_2 \text{ (g)}$$

$$\text{K}_2\text{CO}_3 \text{ (s)} \rightarrow \text{K}_2\text{O (s)} + \text{CO}_2 \text{ (g)}$$

The KCl and K_2O do not react under the conditions of the reaction. If 100.0 g of the mixture produces 1.80 g H_2O , 13.20 g CO_2 , and 4.00 g O_2 , what was the composition of the original mixture? (Assume complete decomposition of the mixture.)

4. Your friend has heard that she can make ethanol by reacting C ₂ H ₄ with H ₂ C	under acidic
conditions, but she's not sure how much of each starting material she needs.	She randomly
mixes 101.7 g C ₂ H ₄ with 55.19 g H ₂ O.	

$$C_2H_4 + H_2O \rightarrow C_2H_6O$$

a. What is the theoretical yield of ethanol in mL? (ethanol density = 0.789 g mL^{-1})

b. Which reactant is in excess? How much of it remains, by mass?

- 5. Complete and balance the following molecular equations, and then write the net ionic equation for each. (Note: in past answer keys, we have written H^+ in net ionic equations, but it is more correct to write H_3O^+ instead. H^+ doesn't actually exist by itself in solution.)
 - a. HBr (aq) + NH₃ (aq) \rightarrow
 - b. Aqueous hydrochloric acid and sodium acetate
 - c. Aqueous perchloric acid and aqueous strontium hydroxide

6. Give the oxidation number of each element in the following compounds:
a. BrO ₃ -
b. H ₂ SO ₄
c. CrO ₄ ² -
d. HCO ₃ -
e. LiAlH ₄
7. Starting with solid sucrose, C ₁₂ H ₂₂ O ₁₁ , describe how you would:
a. Prepare 250 mL of a 0.250 M sucrose solution
b. Prepare 350.0 mL of 0.100 M $C_{12}H_{22}O_{11}$ starting with 3.00 L of 1.50 M $C_{12}H_{22}O_{11}$
c. (Optional) if you have some beverage that contains sucrose—lemonade, soft drink
etc.—calculate the molarity of sucrose for that drink.

8. A 0.180 g sample of caffeine is combusted to yield 0.326 g CO_2 , 0.0835 g H_2O , and 0.171 g NO_2 . The molar mass of caffeine is 194.20 g mol^{-1} .
a. Provide the empirical and molecular formulae for caffeine.
b. According to a cursory Google search, 237 mL of coffee contains 95 mg of caffeine. What is the concentration of caffeine in coffee?