Adapted from an 18 June 2021 document

1. Calculate the energy required to excite the hydrogen electron from level n=1 to n=2. Also calculate the wavelength of light that must be absorbed by a hydrogen atom in its ground state to reach this excited state. (R = $1.097 \times 10^7 \text{ m}^{-1}$, h = $6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$, c = $3.00 \times 10^8 \text{ m/s}$.)

2. An energy of 3.3×10⁻¹⁹ J per atom is required to cause a cesium atom on a metal surface to lose an electron. Calculate the longest possible wavelength of light that can ionize a cesium atom.

3. Which set of quantum numbers **cannot** occur together to specify an orbital or a sub-orbital?

a.
$$n = 2$$
, $l = 1$, $m_l = -1$

b.
$$n = 3$$
, $l = 2$, $m_l = 0$

c.
$$n = 3$$
, $I = 3$, $m_1 = 0$

d.
$$n = 4$$
, $l = 3$, $m_l = 0$

- 4. Find the maximum number of electrons that can have these quantum numbers:
 - a. n = 3
 - b. n = 4, $m_l = 1$ (don't worry about anything past f orbitals)
 - c. n = 4, $m_s = +\frac{1}{2}$
 - d. n = 3, I = 2
 - e. n = 2, I = 1
- 5. Calculate the longest and shortest wavelengths of light emitted by electrons in the hydrogen atom that begin in the n = 6 state and then fall to states with smaller values of n.

6. An excited hydrogen atom emits light with a frequency of 1.141×10^{14} Hz to reach the energy level for which n = 4. In what principal quantum level did the electron begin?

7. They say that diamonds are forever, but this statement is false on a geologic time scale. Given a long enough time, diamonds will convert to graphite.

You will learn why graphite is so stable in the later part of Organic Chemistry 1. For now, let's use Hess's Law to determine the difference in stability between diamond and graphite. Here are some values that I found on the internet*:

C (diamond) +
$$O_2$$
 (g) \rightarrow CO $_2$ (g) ΔH_{rxn}° = -395.335 kJ mol⁻¹

C (graphite) +
$$O_2$$
 (g) \rightarrow CO_2 (g) ΔH_{rxn}° = -393.51 kJ mol⁻¹

a. Using this information, what is ΔH_{rxn}° for C (diamond) \rightarrow C (graphite)?

b. Is the conversion from diamond to graphite endo- or exothermic? Why do or don't we observe the conversion from diamond to graphite?

* Internet sources:

https://atct.anl.gov/Thermochemical%20Data/version%201.118/species/?species number=951 https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Mask=1