1.

- a. Complete the structure above by adding bonds and lone pairs. Every atom will have a complete octet and formal charge of zero. What is the hybridization of the atoms marked (a) through (e)?
 - a: b: c: d: e:
- b. How many σ bonds are in the structure above? How many π bonds?
- c. Circle all of the polar bonds.
- d. What are the bond angles at atoms (a) through (e)?
 - a: b: c: d: e:

2. Complete the following table:

Number of regions of high e ⁻ density	Electron pair geometry name	Hybridization	Angle btwn electron density regions	Total hybrid orbitals	Number of p orbitals left over
2					
3					
4					

3. Fill out the following table:

Name & Lewis	3D Structure	Electron pair geometry	Molecular geometry	Hybridization of each	Polarity of
structure	3D Structure	name	name	central atom	molecule
Ammonia					
H ₂ O ₂					
SF₅⁻					
BH ₂ -					
HCN					

4. Balance the following reaction. Then, using bond dissociation enthalpies from the book, lecture slides, or an online source, calculate the bond dissociation enthalpy of the O-F bond. The ΔH_{rxn} = -318 kJ mol ⁻¹ .
$OF_2\left(g\right) + H_2O\left(g\right) o O_2\left(g\right) + HF\left(g\right)$
5. Draw a likely spatial orientation of a single water molecule with a single molecule of NaCl.
6. True or False:

- a. The principal quantum number (n) associated with an f orbital must be ≥4.
- b. For an electron to go from a lower energy level to a higher energy level, a photon must be absorbed.
- c. The freezing of water is an endothermic process.
- d. The first ionization energy of Li is less than the second ionization energy of Li.
- e. The electronegativity of H is less than that of Mg.
- f. Cation are always larger than the neutral atom of the same element.
- 7. Name three atoms or ions that are described by the electron configuration: [Ar]4s²3d¹⁰4p⁵