CHEM 103

R&R—extra Exam 1 practice:)

7 June 2024

Adapted from a 12 June 2021 document

1. Fill in the missing information.

Symbol	Element	# protons	# neutrons	# electrons	Charge
¹⁴ ₆ C	carbon	6	4	G	0
²³⁵ U	uran:um	92	143	92	0
³² S ²⁻	sulfur	[6	16	ાિ	- 2
¹³⁷ ₅₆ Ba ²⁺	barium	56	41	54	+2
³⁷ Cl ⁻	chlorine	17	20	18	-1

2. A mass spectrum tells us that 60.10% of a metal is present as ⁶⁹M, and 39.90% is present as ⁷¹M. The mass values for ⁶⁹M and ⁷¹M are 68.93 amu and 70.92 amu, respectively. What is the average atomic mass of the element? What is the element?

3. Indium exists as two isotopes. ¹¹³In has a mass of 112.9043 amu, and ¹¹⁵In has a mass of 114.9041 amu. The average atomic mass of indium is 114.82 amu. Calculate the percent relative abundance of the two isotopes of indium.

Let
$$x,y$$
 be a sundance of the two isotopes of indiam.

Let x,y be a sundance of the two isotopes of indiam.

 $x+y=1$; (112.9043 and) $x+(114.9041 \text{ and}) y = 114.82 \text{ and}$
 $x=1-y$ | $112.9043 (1-y) + 114.9041 y = 114.82 \Rightarrow (114.9041-112.9043) y = 114.82 - 112.9043

 $y=95.8\% \rightarrow 115$ In

 $x=4.2\% \rightarrow 115$ In$

- 4. Strategies for balancing equations:
 - a. Find atoms that are only in one compound on one side; balance those first.
 - b. Generally, leave oxygen and hydrogen until the end. They appear many times, and balancing other atoms will often force O and H to become balanced.
 - c. Double check after balancing.

- 5. Oxidation-Reduction (AKA "Redox")
 - a. OIL RIG → oxidation is losing (electrons), reduction is gaining (electrons).
 - b. LEO the lion goes "GER" → Losing Electrons = Oxidation;
 Gaining Electrons = Reduction.
 - c. Something that is reduced is called an *oxidizing agent*. Something that is oxidized is called a *reducing agent*. (What the agent is doing to whatever it reacts with?)

Assign oxidation states to each atom in the following equation. Then state which elements have been reduced/oxidized and list the oxidizing and reducing agents.

- 6. Write the molecular, total ionic, and net ionic forms for the following equations:
 - a. Aqueous acetic acid reacts with aqueous ammonia.

CH₃CO₂H (ag) + NH₃(ag)
$$\Longrightarrow$$
 CH₃CO₂ (ag) + NHy[†](ag)
fotal ionix is same
net ionix is same

b. Aqueous perchloric acid reacts with aqueous lithium hydroxide.

$$HCLO_{H}(\alpha y) + LiOH(\alpha y) \longrightarrow H_{2}O(L) + Li(LO_{H}(\alpha y))$$

$$Hotal ioniz: H_{2}O^{+}(\alpha y) + (LO_{H}(\alpha y) + Li^{+}(\alpha y) + OH^{-}(\alpha y)) \longrightarrow \geq H_{2}O(L) + Li^{+}(\alpha y) + (LO_{H}(\alpha y) + COH^{-}(\alpha y))$$

$$Net ioniz: H_{3}O^{+}(\alpha y) + OH^{-}(\alpha y) \longrightarrow \geq H_{2}O(L)$$

c. Aqueous sodium hydroxide reacts with aqueous phosphoric acid.

No. OH (uy) + H₃ PO₄ (uy)
$$\longrightarrow$$
 H₂O(L) + No. H₂ PO₄ (ay)

Hotal ionic: No. + (ay) + OH (ay) + H₃ PO₄ (uy) \longrightarrow H₂O(L) + No. + (ay) + H₂ PO₄ (ay)

Not ionic: OH (ay) + H₃ PO₄ (ay) \longrightarrow H₂O(L) + H₂PO₄ (ay)

7. Predict the products and balance the following reactions:

a.
$$\geq$$
 KCI (aq) + \perp Pb(CH₃CO₂)₂ (aq) \rightarrow Pl (1, (s) + \geq KCI₃CO₂ (ay)

b.
$$\underline{2}$$
 AgNO₃ (aq) + $\underline{1}$ MgBr₂ (aq) \rightarrow $\underline{2}$ Ag Br (s) + $\underline{N0}_3$)₂ (ag)

- 8. Sodium hydroxide reacts with sulfuric acid to give sodium sulfate and water. If 17.80 g NaOH > NOOH + H, SOy -> 2H2O + Na, SOu is mixed with 15.40 g H₂SO₄,
 - a. How many grams of Na₂SO₄ can be formed?

a. How many grams of Na₂SO₄ can be formed?

17. 80 g NaOH
$$\cdot$$
 mol NaOH \cdot 0.1570 mol NaOH \cdot 0.1570 mol Na₂SO₄ \cdot mol NaOH \cdot 18.40 g NaOH \cdot mol NaOH \cdot 18.40 g Na₂SO₄ \cdot 18.40 g Na₂S

Remaining:
$$(0.4450 \text{ nol } NaOH - Z \cdot 0.1570 \text{ nol } NaOH) \cdot \frac{39.997 \text{ g } NaOH}{\text{nol } NaOH}$$
= 5.240 g NaOH

c. If the actual yield of Na₂SO₄ was 15.00 g, what is the percent yield of Na₂SO₄?

9. The Space Shuttle environmental system handles excess CO2 (which the astronauts breathe out—it is 4% of exhaled air by mass) by reacting it with LiOH pellets to form lithium carbonate and water. If there are seven astronauts on board the shuttle and each exhales 20 liters of air per minute, how long could clean air be generated if there were 25 kg of LiOH pellets available for each shuttle mission? Assume the density of air is 0.0010 g/mL.

10. What mass of Fe(OH)₃ is produced when 35.0 mL of 0.250 M Fe(NO₃)₃ solution is mixed with 55.0 mL of 0.180 M KOH solution?

11. You want to determine the molar mass of an acid. The acid contains one acidic hydrogen per molecule. You weigh out a 2.879 g sample of the pure acid and dissolve it, along with 3 drops of phenolphthalein indicator, in distilled water. You titrate the sample with 0.1704 M NaOH. The pink endpoint is reached after addition of 42.55 mL of base. Calculate the molar mass of the acid.

$$\frac{2.879}{7.2505 \times 10^{-3} \text{ mol}} = 397.1 \frac{3}{100}$$

12. Redox titration strategy:

- i. Balance the redox equation (recommended: half-reaction method)
- ii. Determine moles of titrant
- iii. Use balanced redox equation to determine moles of unknown
- iv. Convert moles of unknown to whichever quantity is requested

A 0.0483 M KMnO₄ solution was used to titrate a solution containing 0.8329 g impure calcium oxalate, CaC_2O_4 . If 30.25 mL of the KMnO₄ solution was required to reach the titration endpoint, calculate the percent purity of the CaC_2O_4 . This reaction takes place in acidic solution.

MuOy + 8H⁺ + 5e⁻
$$\longrightarrow$$
 Mu²⁺ + 4H₂0

Spectator cations

Let shown

 $C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^ C_3O_4^{2-} \longrightarrow 2CO_2 + 3e^ C_3O_4^{2-} \longrightarrow 2CO_2 +$