Bond-ng	
Jovic bording holds ionic compa	ends (Nalleg) together
(1) Start W westral aloms; Nac	g) C/(g)
(2) Fransfer of value e-: Natigi	
(3) opposite charge ions aftract; Na	1_1/
l'ionic bond" = electrostatic inte Charged ions	raction between opposite
Covalent bonding involves sharing	of valence electrons
Represent with Lewis structures atoms = symbol elections = dots	* Most atoms want "octet" - noble gas configuration
Ne	C1.
C12 mobrule has 2 C1 atoms	
• Wen	2 Cl gloms get close enough in share electrons
2 shapped e- = rovalent	Mond
Pairs love pairs" bond = 2 shortd e-	Pach Cl has 6 of its l'own"e- glus the 2 sharede-
:01 =01:	ochet
Coing From mobility Formula to D Find Istal # of valence e- D Dekrmine alom convectivity	r rewis structure

central vs peripheral arouns H, F, CI, Br, I fend to only Form I bond

- (3) Convect all aloms with covalent bonds (each bond = 2e-)
- (4) Distribule remaining et as love pairs to get atoms to their oclet * H atom only needs 2e-
- (5) Cleck account for all e-- ock+/due+
- 6) If some along "unhappy" try additional bonds

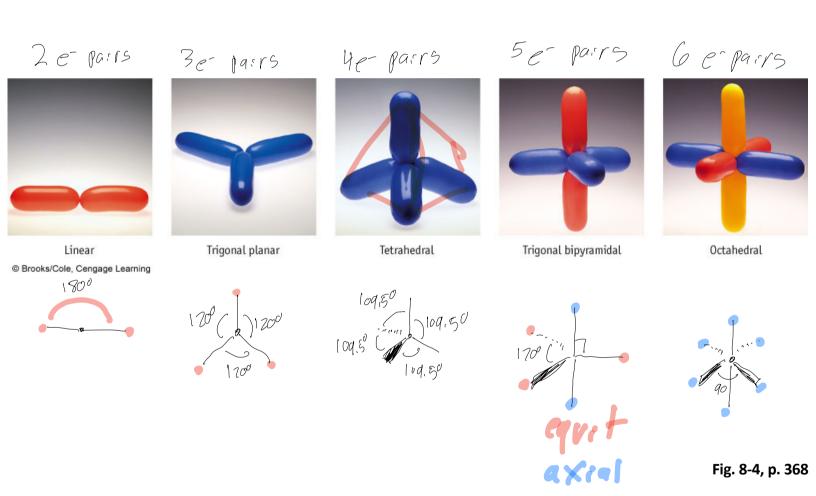
$$N \equiv N$$
:

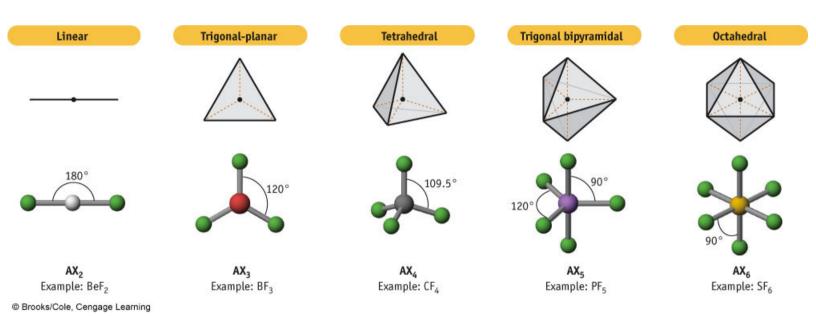
Formal charge
of arom
- bisect each bond

on golo atom

- Farter down table H-only needs Ze-B - only weeds GE larger aloms - valence e-Fartler from nucleus TABLE 8.6 Lewis Structures in Which the Central Atom Exceeds an Octet Group 7A Group 8 Group 4A Group 5A Group 6A SiF₅ PF₅ SF4 CLF₃ XeF₂ XeF₄

@ Brooks/Cole, Cengage Learning


Resonance 0-doesn't arrighty :0-0-0: No actet 03 -02011 -18e :0-0-0 -0K 0-0-0: - have ag Expect assumetrie molecule bic I side has double band and I side has single bond Experiments show that motercle is symmetric 2 electrons shared by all 3 abus De-shared by 3 gloms (0-0=0 0=0-0) - 2 regonance structures L'irality" is he average of he Myonance afroctures Need double hand that can be get in multiple locations without moving any along H-C-C-C H-C-C-C Work regonance


3D structure described by Valouce Glell Electron Pair Repulsion

* electron pairs repel each other

and try to avoid each other

Electron pair growerry at each atom is what we need to individual

Consider all atoms With 71 thing connected to it

-determine # of electron pairs around atom -> electron pair

gometry

bonds and love pairs rount as electron pairs well as a geometry is only where about are

Fig. 8-5, p. 369

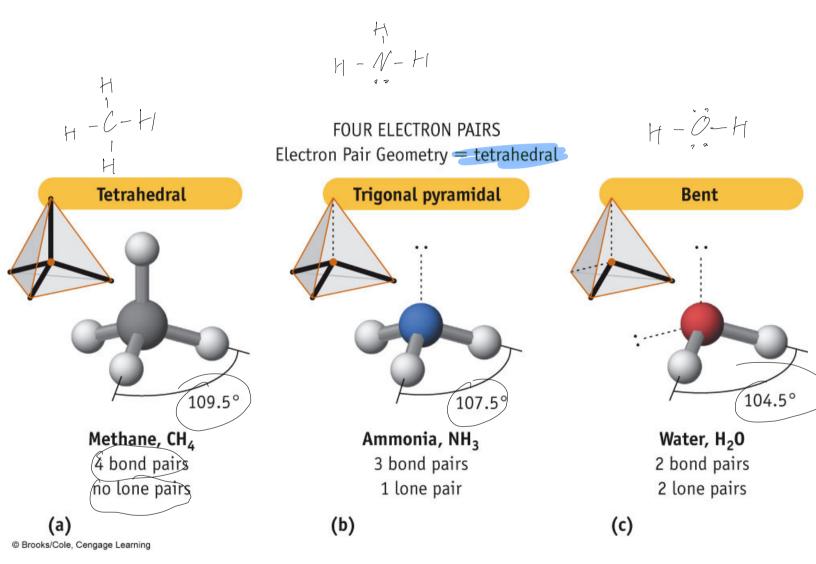
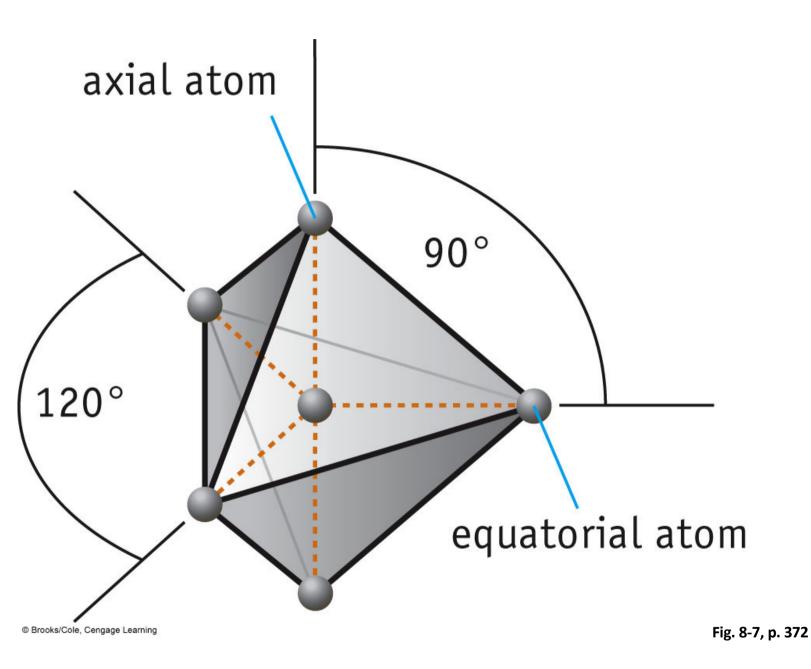
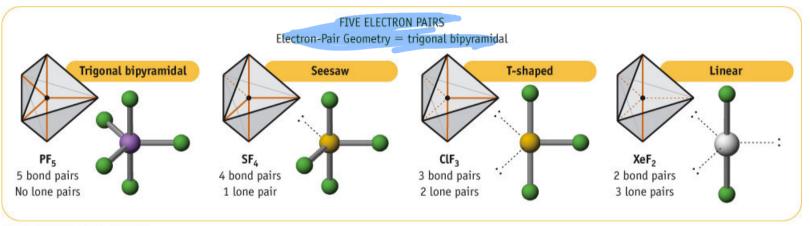
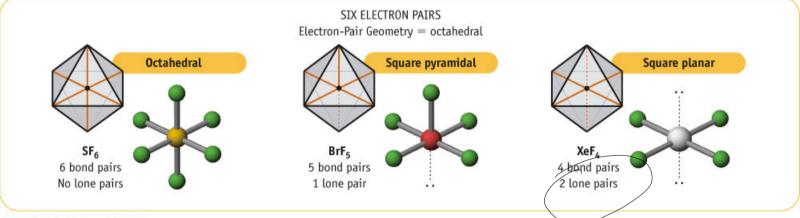




Fig. 8-6, p. 371

* love pairs always go equitorial



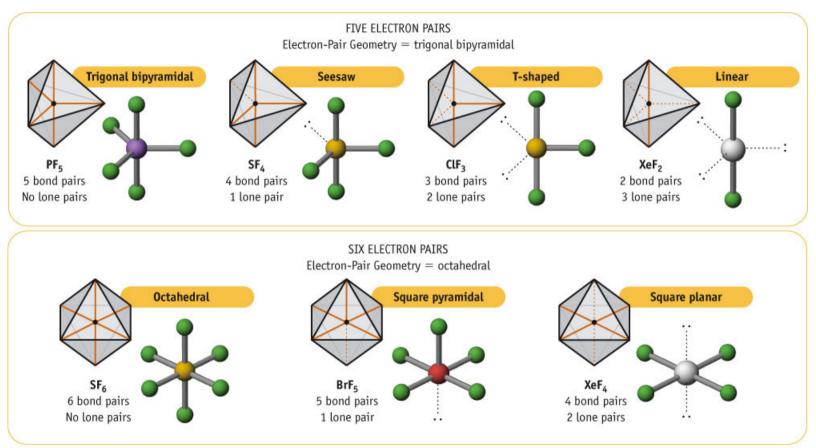
@ Brooks/Cole, Cengage Learning

CIF3 18e-

Fig. 8-8, p. 372

@ Brooks/Cole, Cengage Learning

Nemove bond


Opposib of

Where you gut

Towe pail

Fig. 8-8, p. 372

@ Brooks/Cole, Cengage Learning

Fig. 8-8, p. 372

For double/triple bonds in 3D structures "Lount" as only I pair of electrons :0: -3e-parrs-all bonds -> trigonal planal CH3CH3

For covalent bond has perfectly equitable sharing of a electron pair host of time electrons are shared unequally weighting on one end of bond wifn more electron density and one end with

Electronegativity-how gelfigh an alom is about sharing electrones 0-74

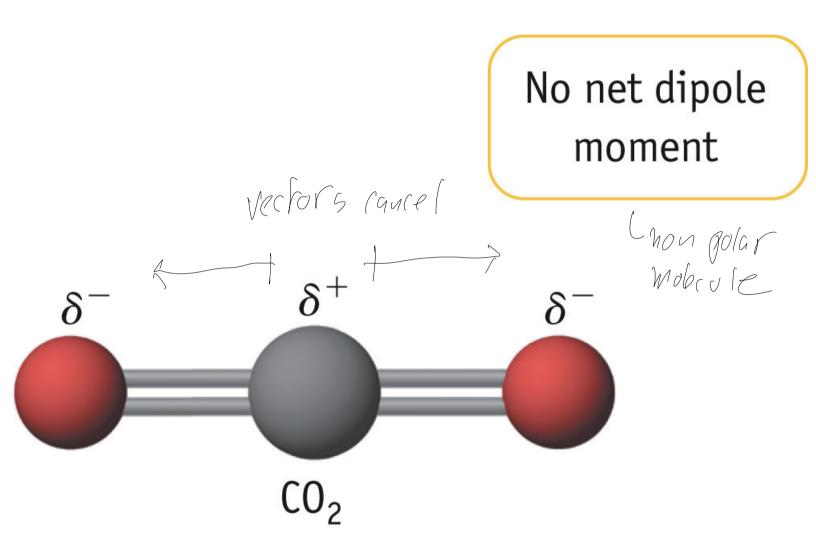
least selfigh

If Delectroneg by Z grows is Zo.5 bond is polar

	1A	2A							H 2.2				3A	4A	5A	6A	7A
		Allester All		2.2										7.007.000		1	
	Li	Be											В	C	N	0	F
1	.0	1.6									2.0	2.5	3.0	3.5	4.0		
1	٧a	Mg							8B				Al	Si	Р	S	Cl
0).9	1.3	3B	4B	5B	6B	7B				1B	2B	1.6	1.9	2.2	2.6	3.2
6	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0	8.0	1.0	1.4	1.5	1.6	1.7	1.5	1.8	1.9	1.9	1.9	1.6	1.8	2.0	2.2	2.6	3.0
F	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I
0	8.0	1.0	1.2	1.3	1.6	2.2	1.9	2.2	2.3	2.2	1.9	1.7	1.8	2.0	1.9	2.1	2.7
(Cs	Ва	La	Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
0	8.0	0.9	1.1	1.3	1.5	2.4	1.9	2.2	2.2	2.3	2.5	2.0	1.6	2.3	2.0	2.0	2.2

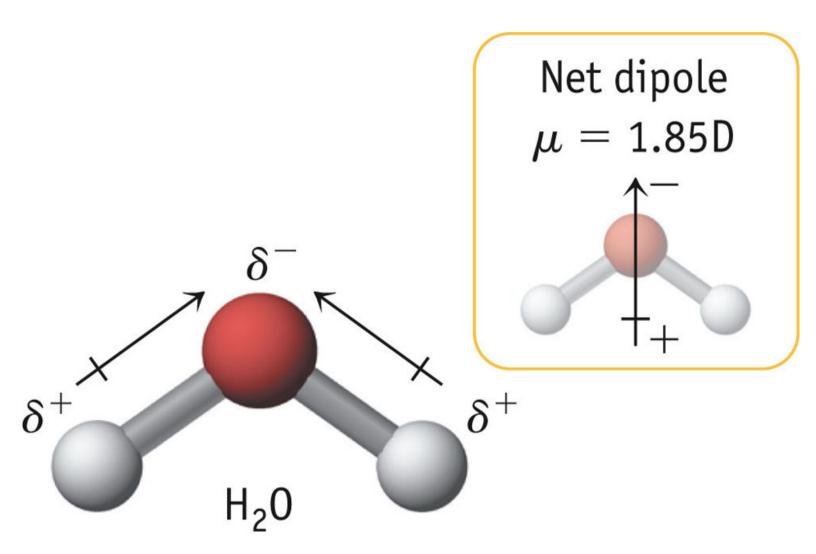
Brooks/Cole. Cengage Learning

S+S-partial


pos neg

CH3F S-ifinder H-C-F:

Fig. 8-11, p. 376


wore electroneg atom is the vegative

mobrules Poler bond to golar Polar lead bonds B eneg = 2,0 BH3 H eneg: 2,2 BH2F F e wg = 4,0 BHF2 molecule BF3 non polar mobile look at each bond polarity how dols som of all or not Cancel polar wolcole walco le

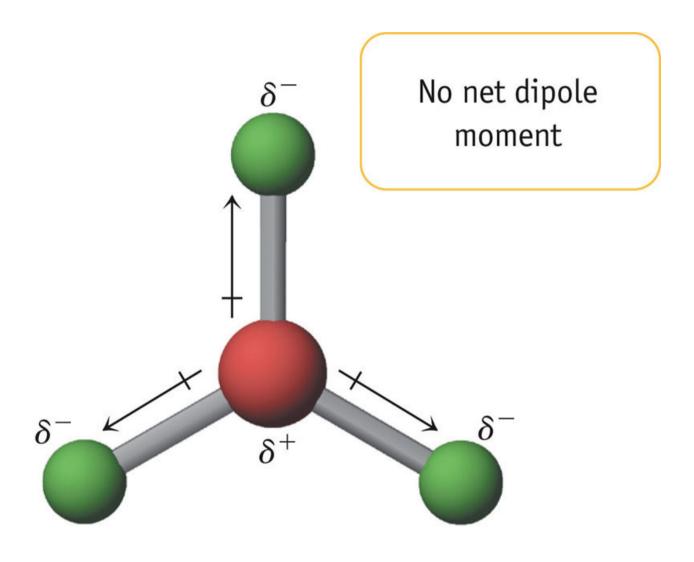

(a)
Brooks/Cole, Cengage Learning

Fig. 8-13, p. 381

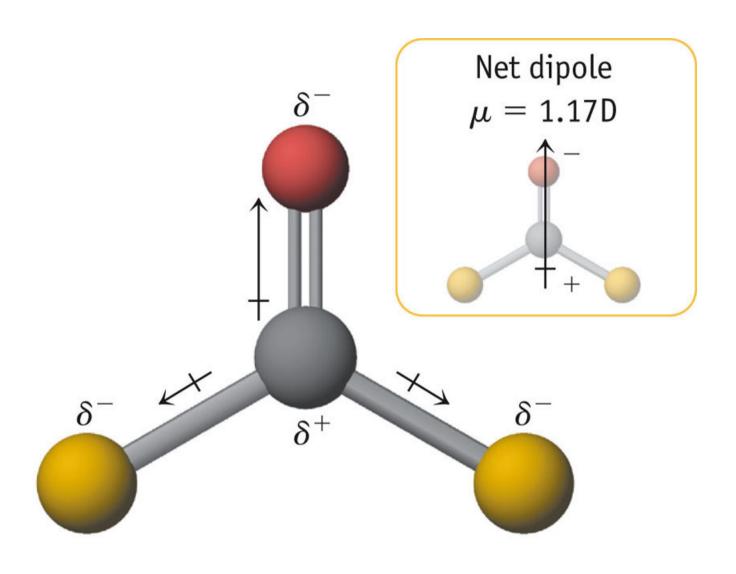
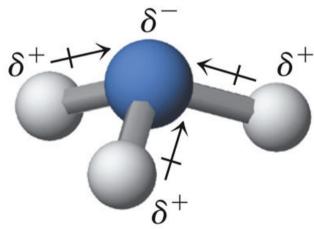

(b)
© Brooks/Cole, Cengage Learning

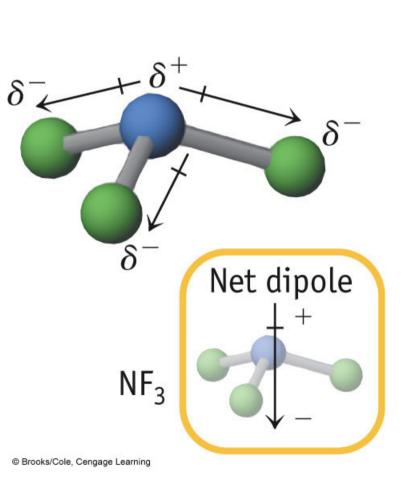
Fig. 8-13, p. 381

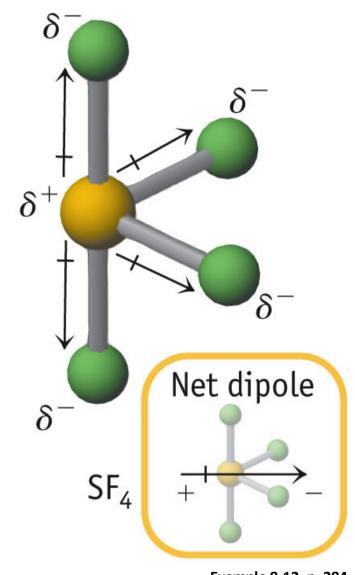
© Brooks/Cole, Cengage Learning


BF₃ Fig. 8-14, p. 383

 Cl_2CO

© Brooks/Cole, Cengage Learning





 NH_3

© Brooks/Cole, Cengage Learning

Fig. 8-14, p. 383

Example 8-12, p. 384

TABLE 8.8 Some Average Single- and Multiple-Bond Lengths in Picometers (pm)*
Single Bond Lengths

	Group										
	1A	4A	5A	6A	7A	4A	5A	6A	7A	7A	7A
	Н	С	N	0	E	Si	Р	S	Cl	Br	I
Н	74	110	98	94	92	145	138	132	127	142	161
C		154	147	143	141	194	187	181	176	191	210
N			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
Р							220	214	209	224	243
S								208	203	218	237
Cl									200	213	232
Br										228	247
I											266

Multiple Bond Lengths

c=c	134	c = c	121
c=N	127	C = N	115
C=0	122	C ≡ 0	113
N=0	115	$N \equiv 0$	108

© Brooks/Cole, Cengage Learning

Table 8-8, p. 387

^{*1} pm = 10^{-12} m.

TAE	BLE 8.9	Some	Averag	e Bond Dis	ociati	on Enth	nalpies	(kJ/mol) [*]	t		
					Singl	e Bonds					
	Н	C	N	0	F	Si	Р	S	Cl	Br	I
Н	436	413	391	463	565	328	322	347	432	366	299
С		346	305	358	485	-	-	272	339	285	213
N			163	201	283	-	_	_	192	-	_
0				146	_	452	335	_	218	201	201
F					155	565	490	284	253	249	278
Si						222	_	293	381	310	234
Р							201	-	326	-	184
S								226	255	_	_
Cl									242	216	208
Br										193	175
I											151
					Multip	ole Bond	s				
				N=N	41	18	c=c	610			
				$N \equiv N$	94	45	c = c	835			
				c=N	61	15	c=0	745			
				C≡N	88	37	C≡0	1046			
				0=0 (in O ₂)	49	98					

^{*}Sources of dissociation enthalpies: I. Klotz and R. M. Rosenberg: *Chemical Thermodynamics*, 4th Ed., p. 55, New York, John Wiley, 1994; and J. E. Huheey, E. A. Keiter, and R. L. Keiter: *Inorganic Chemistry* 4th Ed., Table E. 1, New York, Harper-Collins, 1993. See also Lange's *Handbook of Chemistry*, J. A. Dean (ed.), McGraw-Hill Inc., New York.

© Brooks/Cole, Cengage Learning Table 8-9, p. 389