Chemical Kinetics

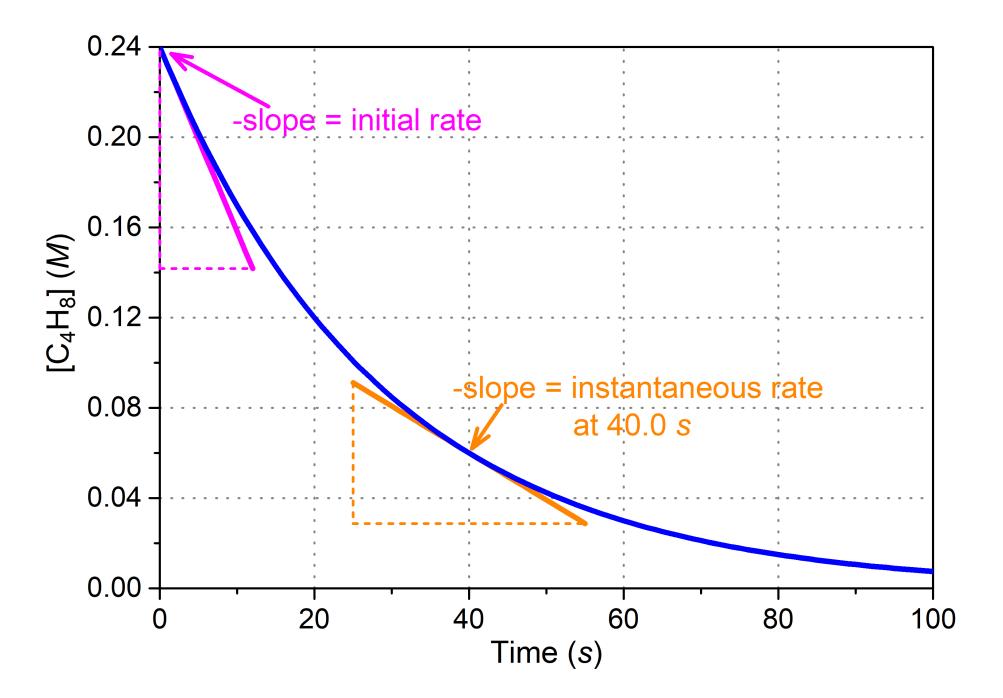
Why study kinetics?

Average Rate

. I concentration of reactant or product over a period of time. (reactants) I over time. (products) I over time

Relative Reaction Rates

The Rate Law

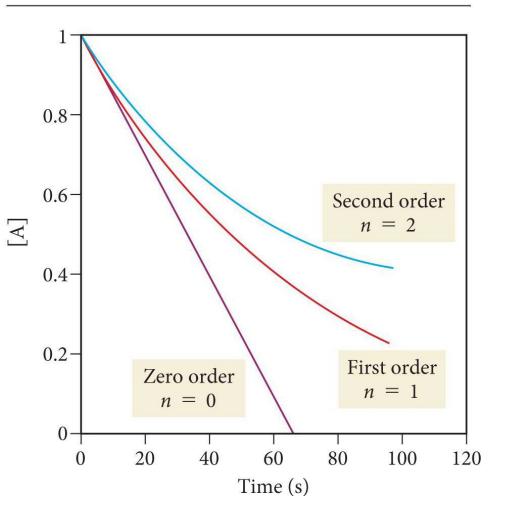

- A rate law describes a relationship between the rate of a reaction and the concentration of its reactants
- The rate law must be determined experimentally!

For a reaction $A + B \rightarrow products$

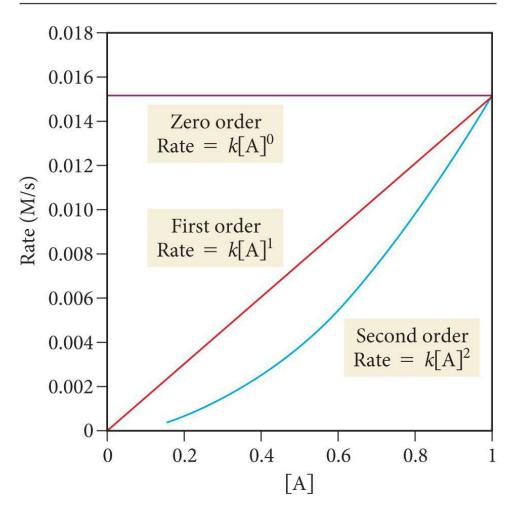
rate =
$$k[A]^m[B]^n$$

Finding the Rate Law: Method of Initial Rates

- Measure initial rate (at t = 0)
- Vary concentrations of reactants and determine the initial rate


Determining the rate law and Rate Constant of a Reaction

$$NO_2(g) + CO(g) \longrightarrow NO(g) + CO_2(g)$$


[NO ₂] (M)	[CO] (M)	Initial Rate (M/s)
0.10	0.10	0.0021
0.20	0.10	0.0082
0.20	0.20	0.0083
0.40	0.10	0.033

Reactant Concentration versus Time A - Products

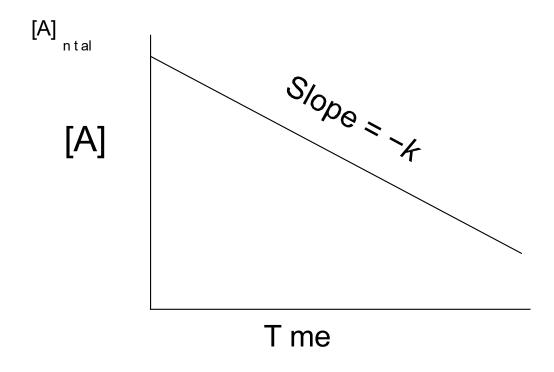
Reactant Concentration versus Time

Rate versus Reactant Concentration

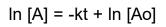
Integrated Rate Laws

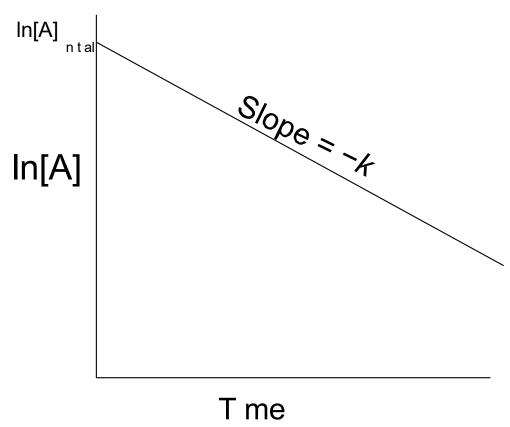
 Applying calculus to integrate the differential rate law gives another equation showing the relationship between the concentration of A and the time of the reaction; this is called the integrated rate law.

Order	Rate	Integrated Rate Law
0	$r = k[A]^0 = k$	$[A]_t = -kt + [A]_0$
1	r = k[A]	$ln [A]_t = -kt + ln [A]_o$
2	$r = k[A]^2$	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_o}$

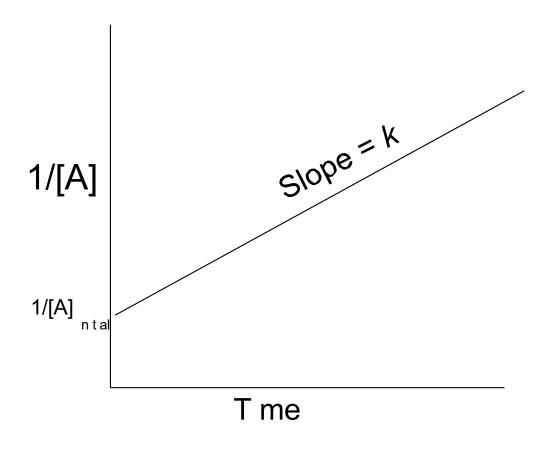

• How can we use graphical methods to determine the reaction order with respect to A?

Using integrated rate law


- Given data, prepare 3 kinetics plots
- Determine order of reaction and rate constant
- Graphing by hand in lecture, we will use excel for data analysis for kinetics labs
- Excel versus graphing by hand?


Zero Order Reactions

[A] = -kt + [Ao]


First-Order Integrated Rate Law

Second-Order Integrated Rate Law

1/[A] = kt + 1/[Ao]

Time (min) [CH₃CN], (M)

0 1

5 0.794

15 0.501

20 0.393

25 0.316

Determine the reaction order and the rate constant with respect to CH₃CN

Order	Rate Law	Units of k	Integrated Rate Law	Straight-Line Plot	Half-Life Expression
0	Rate = $k[A]^0$	$ ext{M} \cdot ext{s}^{-1}$	$[A]_t = -kt + [A]_0$		$t_{1/2} = \frac{[A]_0}{2k} = \frac{1}{k} \frac{[A]_0}{2}$
1	Rate = $k[A]^1$	s^{-1}	$ \ln[A]_t = -kt + \ln[A]_0 $ $ \ln \frac{[A]_t}{[A]_0} = -kt $	y-intercept = $In[A]_0$ Slope = $-k$	$t_{1/2} = \frac{0.693}{k} = \frac{1}{k} \ (0.693)$
2	Rate = $k[A]^2$	$\mathrm{M}^{-1}\cdot\mathrm{s}^{-1}$	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$	Slope = k y-intercept = $1/[A]_0$ Time t	$t_{1/2} = \frac{1}{k[A]_0} = \frac{1}{k} \frac{1}{[A]_0}$

Suppose that the half-life of steroids taken by an athlete is 42 days. Assuming that the steroids biodegrade by a first-order process, how long would it take for 1/64 of the initial dose to remain in the athlete's body