Chapter 13

		1	
1.	A solution is prepared by mixing 1.0 final volume of 101 mL. Calculate the of ethanol in this solution.		
2.	Calculate the expected vapor pressur g common table sugar (molar mass = density of water is 0.9971 g/cm³ and	= 342.3 g/mol) in 643.5 cm ³ of	water. At 25°C, the
3.	Consider the following solutions:	$0.10 m \text{ Na}_3 \text{PO}_4$ in water $0.20 m \text{ KCl}$ in water	$0.20 m \text{ CaBr}_2 \text{ in water}$ 0.20 m HF in water
a.	Assuming complete dissociation of the soluble salts, please circle the solution(s) that would have the same boiling point as $0.40 \ m$ glucose ($C_6H_{12}O_6$, non-electrolyte) in water.		
b.	Which solution would have the largest freezing-point depression and why?		
c.	How many grams of glucose per liter should be used for an intravenous solution that is isotonic with the 7.65 atm osmotic pressure of blood at body temperature, 37.0°C?		

4. A 2.00 g sample of a large biomolecule was dissolved in 15.0 g carbon tetrachloride (CCl₄). The boiling point of this solution was determined to be 77.85°C. Calculate the molar mass of the biomolecule. For carbon tetrachloride, the boiling point constant, K_{bp}, is 5.03°C•Kg/mol, and the boiling point of pure carbon tetrachloride is 76.50°C.

5. What mass of ethylene glycol ($C_2H_6O_2$), in grams, must be added to 1.0 kg of water to produce a solution that boils at 105.0°C? The boiling point elevation constant for water, K_{bp} , is 0.512°C/m.

NOTE: Q6 on ion hydration enthalpies is not something that was stressed in lecture, and so is outside the scope of the course.

6. Ion hydration enthalpies:

Ion	$\Delta H_{hydration} (kJ/mol)$	
Li ⁺	-545	
Na ⁺	-418	
K ⁺	-351	
Mg^{2+}	-1923	
Cl-	-338	

- a. Explain why the hydration enthalpy falls as you go down group 1.
- b. Explain why the value for Mg^{2+} is so much greater than that of Na^+ .
- c. Would the value for Ca^{2+} be more negative or less negative than that of Mg^{2+} ?
- d. If the $-\Delta H_{lattice}$ for MgCl₂ is +2526 kJ/mol, estimate the enthalpy change for a solution of MgCl₂.