14.1 (a)
$$-\frac{1}{2} \frac{\Delta[O_3]}{\Delta t} = \frac{1}{3} \frac{\Delta[O_2]}{\Delta t}$$

(b)
$$-\frac{1}{2} \frac{\Delta [\text{HOF}]}{\Delta t} = \frac{1}{2} \frac{\Delta [\text{HF}]}{\Delta t} = \frac{\Delta [\text{O}_2]}{\Delta t}$$

** The question numbers are wrong, they should be 11 & 13.)

- 14.13 (a) The reaction is second order in [NO] and first order in $[O_2]$.
 - (b) Rate = $\frac{-\Delta[NO]}{\Delta t} = k[NO]^2[O_2]$
 - (c) $k = 25 \text{ L}^2/\text{mol}^2 \cdot \text{s}$
 - (d) Rate = 2.8×10^{-5} mol/L·s
 - (e) When $-\Delta[NO]/\Delta t = 1.0 \times 10^{-4} \text{ mol/L} \cdot \text{s}$, $\Delta[O_2]/\Delta t = 5.0 \times 10^{-5} \text{ mol/L} \cdot \text{s}$ and $\Delta[NO_2]/\Delta t = 1.0 \times 10^{-4} \text{ mol/L} \cdot \text{s}$.
- 14.15 (a) Rate = $-\Delta[NO]/\Delta t = k[NO]^2[O_2]$
 - (b) 50. L2/mol2 · h
 - (c) Rate = $8.4 \times 10^{-9} \text{ mol/L} \cdot \text{h}$