1	Please identify	the following	statements as	either true	or false
ㅗ.	i icasc iaciitii	, tile lollowing	Statements as	Citiici ti uc	OI Taise.

a)	Adding solute to a pure solvent widens the temperature range at which the		
	solution is liquid.		
b)	The units of the rate constant, k, are the same for all order reactions.		
c)	The graph of reactant concentration vs. time is linear for all order reactions.		

d) _____ Radioactive decay is always a first-order process.
e) _____ For first-order reactions, the reaction half-life is always
$$t_{1/2} = \frac{\ln 2}{k}$$
.

$$2 NH_3 \longrightarrow N_2 + 3 H_2$$

the average rate of disappearance of NH₃ over the time period from t = 0 s to t = 4186 s is found to be 1.50×10^{-6} M s⁻¹. The average rate of formation of H₂ over the same time period is:

3. Write an expression for the reaction rate law and calculate the value of the rate constant, *k* based on the following data. What is the overall order of the reaction?

$$2 \text{ NO}_{2 \text{ (g)}} + \text{F}_{2 \text{ (g)}} \longrightarrow 2 \text{ NO}_{2}\text{F}_{\text{ (g)}}$$

[NO ₂] (M)	[F ₂] (M)	Initial Rate (M/s)
0.100	0.100	0.026
0.200	0.100	0.051
0.200	0.200	0.103
0.400	0.400	0.411

4. Please use the table below to determine the order of NOBr decomposition and the value of k:

Time (s)	[NOBr] (M)	ln[NOBr]	1/[NOBr]
10	0.50		
20	0.33		
30	0.25		
40	0.20		

- 5. The decomposition of XY is second order in XY and has a rate constant of 7.02 x 10⁻³ 1/M⋅s at a certain temperature:
 - a) How long will it take for the concentration of XY to decrease to 12.5% of its initial concentration when the initial concentration is 0.100 M?

b) How long will it take for the concentration of XY to decrease to 12.5% of its initial concentration when the initial concentration is 0.200 M?

- c) If this were a first order reaction, how would your calculations differ? Please explain briefly.
- d) If the initial concentration of XY is 0.052 M, what is the concentration of XY after 64 s?