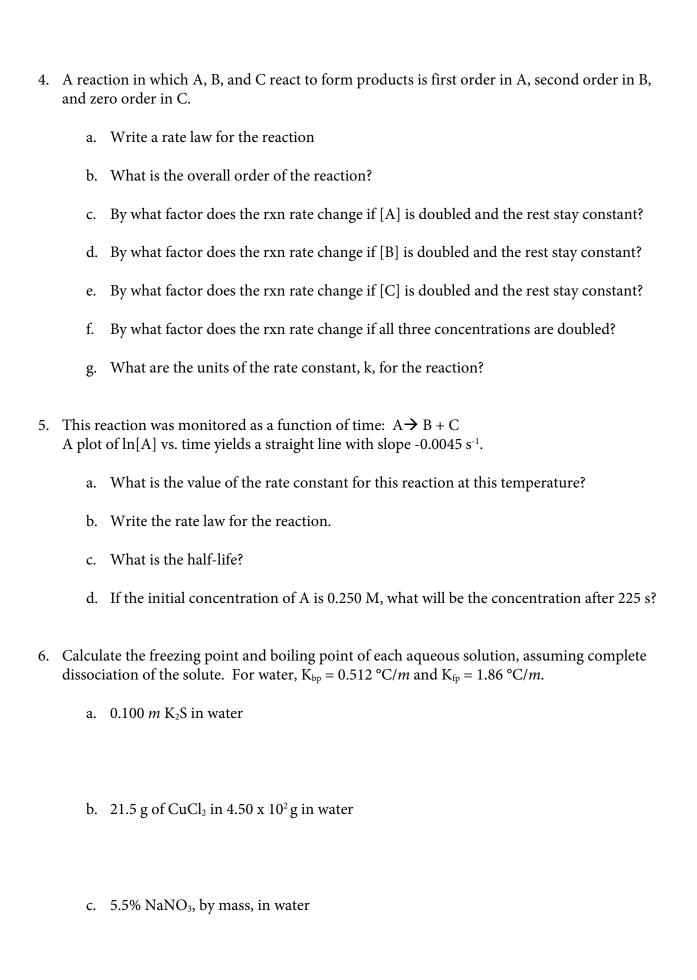
Chapter 14

1. Consider the following reaction between nitrogen dioxide and carbon monoxide: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

The initial rate of the reaction was measured at several different concentrations of the reactants with the following results:


O		
$[NO_2](M)$	[CO] M	Initial rate (M/s)
0.10	0.10	0.0021
0.20	0.10	0.0082
0.20	0.20	0.0083
0.40	0.10	0.033

From the data, determine the rate law and the rate constant (k) for the reaction.

2. Consider the equation for the decomposition of SO_2Cl_2 : $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

The concentration of SO_2Cl_2 was monitored at a fixed temperature as a function of time during the decomposition. The reaction was determined to be first order and has a rate constant of $2.90 \times 10^{-4} \text{ s}^{-1}$. If the reaction is carried out at the same temp., and the initial concentration of SO_2Cl_2 is 0.0225 M, what will the SO_2Cl_2 concentration be after 865 sec?

- 3. The solubility of nitrogen gas in water is 821 μ mol/L at 0°C when N_2 pressure above the water is 0.790 atm. (a) What is the Henry's Law constant for N_2 in units of mol/L•atm?
 - (b) What is the solubility of N_2 in water when the partial pressure of nitrogen above the water is 1.10 atm at 0°C?

