

PLI 27 Friday, July 8, 2016

Chapter 14 moltosom and roll wall also a stirt W as

1. Consider the following reaction between nitrogen dioxide and carbon monoxide: $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$

The initial rate of the reaction was measured at several different concentrations of the reactants with the following results:

	$[NO_2](M)$	[CO] M	Initial rate (M/s)	
×25	0.10	0.10	0.0021	1
	0.20	x2/0.10	0.0082	R
siduo, i	0.20	5 0.20	0.0083	K
. 1	0.40	0.10	0.033	

From the data, determine the rate law and the rate constant (k) for the reaction.

2. Consider the equation for the decomposition of SO_2Cl_2 : $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$

The concentration of SO_2Cl_2 was monitored at a fixed temperature as a function of time during the decomposition. The reaction was determined to be first order and has a rate constant of $2.90 \times 10^{-4} \, \text{s}^{-1}$. If the reaction is carried out at the same temp., and the initial concentration of SO_2Cl_2 is $0.0225 \, \text{M}$, what will the SO_2Cl_2 concentration be after 865 sec?

3. The solubility of nitrogen gas in water is 821 μ mol/L at 0°C when N₂ pressure above the water is 0.790 atm. (a) What is the Henry's Law constant for N₂ in units of mol/L•atm?

(b) What is the solubility of N_2 in water when the partial pressure of nitrogen above the water is 1.10 atm at 0°C?

	and ze	ro order in C.
	a.	Write a rate law for the reaction $ _{Vate} = _{L[A][B]}^2$
	b.	What is the overall order of the reaction? Huid order
	c.	By what factor does the rxn rate change if [A] is doubled and the rest stay constant?
	d.	By what factor does the rxn rate change if [B] is doubled and the rest stay constant? 4
	e.	By what factor does the rxn rate change if [C] is doubled and the rest stay constant? / (no change
	f.	By what factor does the rxn rate change if all three concentrations are doubled?
	g.	What are the units of the rate constant, k, for the reaction? $\frac{L^2}{mo(2)} \frac{1}{s}$ or $M^{-2} s^{-1}$ (you find wand the units of the rate to be Ms).
5.		eaction was monitored as a function of time: $A \rightarrow B + C$ of $\ln[A]$ vs. time yields a straight line with slope -0.0045 s ⁻¹ . first order!
	a.	What is the value of the rate constant for this reaction at this temperature? $K = -5/\rho R = 0.0045\frac{1}{5}$
	(y) b.	Write the rate law for the reaction. $ rate = 0.0045 \pm 1.00000000000000000000000000000000000$
	c.	What is the half-life? $t_2 = \frac{\ln 2}{K} = \frac{\ln 2}{0.0045} = 154 \text{ s}$
		If the initial concentration of A is 0.250 M, what will be the concentration after 225 s? $ \ln [A]_t = -Kt + \ln [A]_o = -0.0045 + (225 \text{ s}) + \ln (0.250 \text{ M}) = -2.40 $ $ [A]_t = e^{-2.40} = 0.0908 \text{ M} $
6.		ate the freezing point and boiling point of each aqueous solution, assuming complete lation of the solute. For water, $K_{bp} = 0.512 ^{\circ}\text{C/m}$ and $K_{fp} = 1.86 ^{\circ}\text{C/m}$. The solute is a solution of the solute.
	a.	0.100 m K ₂ S in water
	FV.	earing: DTep= Kep (m·i) = 1.86°C/m (0.100m) (3) = 0.558°C [Tep=-0.558°C
	Bo	(Pap: DTbp = Kbp (u1.i) = 0.512°C/m (0.100m)(3) = 0.1536°C Tbp = 100.154°C
	b.	21.5 g of CuCl ₂ in 4.50 x 10 ² g in water Calculate m: 21.5 g CuCl ₂ (1mol 13445g) / 0.450kg H20 cuering: ATEP = KEP (m·i) = 1.86° (/m (0.355m)(3) = 1.98° C TEP = -1.98° C TEP = -1.98° C or (hyp: ATEP = KEP (m·i) = 0.512° (/m (0.355m)(3) = 0.546° C TEP = 100.546° C TEP = 100.546° C
	FU	cering: ATEP = Kep (m.i) = 1.86° (/m (0.355m)(3) = 1.98° (Tep = -1.98° () = 0.35 3 m
	Во	illing: Also = Kop(mil) = 0.512°(/m (0.355m) (3) = 0.546°(Tbp = 100.546°C)
	C.	5.5% NaINO3, by mass, in water Closerne 1009: 5.5g NaND3 (mg) /0.0945kg (+20 = 0.685,
	garanced	· + + = + + (M.1) = 1.86°C/m (0.685m) (2) = 2.55°C Tep = -2.55°C
	6	of Typ : DTop = Kpp (mii) = 0.512°C/m (0.685m) (2) = 0.701°C (Tpp = 100.701°C)

4. A reaction in which A, B, and C react to form products is first order in A, second order in B,