

CHEM 104 PLI 29 Mock Exam Tuesday, July 12, 2016

Mock Exam I

1. Interferon is a water-soluble, non-dissociating protein. A 2.50 mL solution prepared by dissolving 15.0 mg of interferon in water exhibits an osmotic pressure of 5.80 mm Hg at 25 °C. What is the molar mass of interferon?

$$\Pi = CRT - 2 C = \frac{\pi}{RT}$$

$$\Pi = 5.80 \text{ mm Hg} \left(\frac{1 \text{ atm.}}{760 \text{ mm Hg}}\right) = 7.632 \times 10^{-3} \text{ atm.} \qquad T = 25 + 273 = 298 \text{ K}$$

$$C = \frac{\pi}{RT} = \frac{7.632 \times 10^{-3} \text{ atm.}}{0.08206 L \text{ atm.}} = 3.121 \times 10^{-4} \text{ mol.}$$

$$0.002501 \left(3.121 \times 10^{-4} \text{ mol.}\right) = 7.802 \times 10^{-7} \text{ mol.}$$

$$1.92 \times 10^{-4} \text{ g/mol.}$$

- 2. Assuming complete dissociation, which 0.10 *m* electrolyte solution will show the largest freezing point depression?
 - (A) HCl i=2
 - (B) NaNH₄ i = 2
 - (C) CaBr₂ l=3
 - (D) MgSO4 1 = 2
 - (E) K₃PO₄ L=4
- 3. The half-life of a first-order reaction is 1.5 hours. How much time is needed for 94% of the reactant to change to product?

Of find
$$k$$
: $l_{1} = -k t$ of lom/g (lom/g 1.101 = lom/g 1.101 = lom/g (lom/g 1.101 = lom/g

4. When the kinetics of the reaction, $2A + 2B \rightarrow C$ were studied using the method of initial rates, the data in the table below were obtained.

Trial	[A] ₀ (M)	[B] ₀ (M)	Initial Rate of Formation of C (M/s)
solu t tic	×2/0.060	13,0.040 ×2	3.6×10^{-4} $\times 2$
2	0.060	0.080	x1.5 (7.2 x 10-4)
3	△ 0.030	0.120	5.4 x 10 ⁻⁴

What is the rate law for the reaction?

5. For the reaction $5O_{2(g)} + 4NH_{3(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)}$, if NH₃ is being consumed at a rate of 0.50 M/s, at what rate is H₂O being formed?

$$\frac{1}{4} \left(\frac{\Delta \left[\text{NH} 3 \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta \left[\text{HzO} \right]}{\Delta t} \right) = \frac{1}{6} \left(\frac{\Delta$$

6. A solution of 5.00 g of which ionic solid, in 1 L of solution at 25 °C, has the largest osmotic pressure? Tr=CiRT -> RT is same for all; look af Ci.

(A) CaBr₂ (molar mass = 199.9 g/mol)
$$0.015$$
 ($ci = mole: 5.09$ (molar mass = 104.5 g/mol) 0.019 ($ci = mole: 5.09$ (molar mass = 266.7 g/mol) 0.015 (molar mass = 266.7 g/mol) 0.020 (E) NaI (molar mass = 149.9 g/mol) 0.020 fund the largest involutions

7. A substance XY decomposes in a second-order reaction. A solution that is initially 1.00 M in XY requires 0.50 hours for its concentration to decrease to 0.50 M. How much time will it take for a solution of XY to decrease in concentration from 2.00 M to 0.25 M?

$$\frac{1}{(x_1)_t} = Kt + \frac{1}{(x_1)_0} \rightarrow K = \frac{1}{(x_1)_t} = \frac{1}{(x_1)_0} = \frac{1}{0.50 \text{ his}} = \frac{1}{2 \text{ min}}$$

$$\frac{1}{t} = \frac{1}{(x_1)_t} = \frac{1}{(x_1)_0} = \frac{1}{0.25 \text{ M}} = \frac{1}{2.00 \text{ M}} = \frac{1}{1.75 \text{ hours}}$$

$$\frac{1}{2 \text{ min}} = \frac{1}{2 \text{ min}} = \frac{1}{1.75 \text{ hours}}$$

Passage II (Questions 8-14)

A chemist interested in the reactivity of iodine concentrated his study on two reactions: the decomposition of gaseous hydrogen iodide (Reaction 1) and the reaction between iodide ions and persulfate ions (Reaction 2).

$$2HI(g) \stackrel{\dashv}{\vdash} H_2(g) + I_2(g)$$

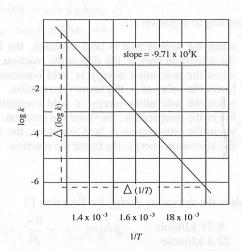
Reaction 1

$$3I^{-}(aq) + S_2O_8^{2-}(aq) \stackrel{r}{\vdash} I_3^{-}(aq) + 2SO_4^{2-}(aq)$$

Reaction 2

The value of the rate constant for Reaction 1 was studied as a function of temperature. The results are shown

Т	a	h	e	
•		0,		


		i ttore i	
T(K)	$1/T (K^{-1})$	$k (1 \text{-mol}^{-1} \text{sec}^{-1})$	$\log k$
555	1.80 ×	3.52×10^{-7}	-6.453
575	10-3	1.22×10^{-6}	-5.913
645	1.74 ×	8.59×10^{-5}	-4.066
700	10-3	1.16×10^{-3}	-2.936
781	1.55 ×	3.95×10^{-2}	-1.403
	10-3		
	1.43		10
	$\times 10^{-3}$		
	1.28 ×	Jon til (20 ld mol	- In allegable
	10-3	/	

For any reaction, the activation energy (E_a) is related to the rate constant (k) by the Arrhenius equation (Equation 1):

$$k = A \times 10^{(-E_a / 2.303RT)}$$

Equation 1

where R = 8.314 J mol⁻¹K⁻¹, T is the temperature in Kelvin, and A is a constant, called the frequency factor. Figure 1 shows a graph of $\log k$ vs. 1/T for Reaction 1.

In order to determine the initial rate of Reaction 2, the following data were collected:

Table 2

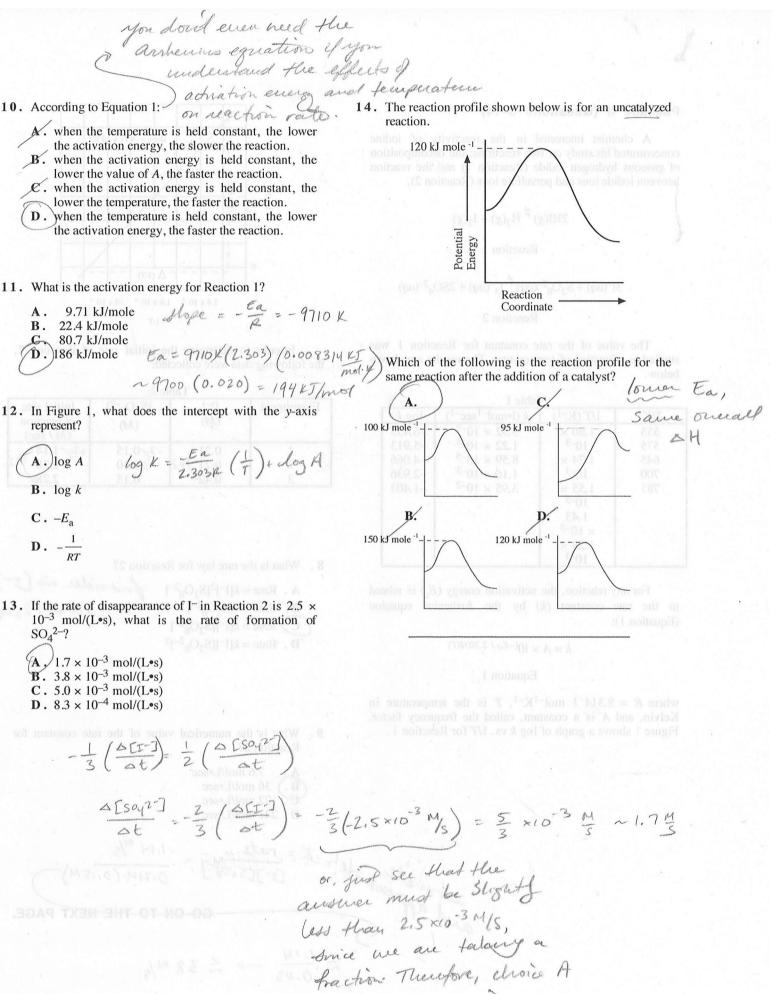
Experiment	[I ⁻] (M)	$[S_2O_8^{-2}]$ (M)	Initial rate of reaction (M/sec)
1 /	0.21	×2/0.15	*2/1.14
2	0.21)×2	50.30	(2.28)×2
3	0.42	0.15	2.28

8. What is the rate law for Reaction 2?

A. Rate =
$$k[I^{-}]^{2}[S_{2}O_{8}^{2-}]$$
 first order in [T]

B. Rate = $k[S_{2}O_{8}^{2-}]$ and in [S₂O₈²]

C. Rate = $k[I^{-}][S_{2}O_{8}^{2-}]$


(C) Rate =
$$k[I^-][S_2O_8^{2-}]$$

D. Rate =
$$k[I^-][S_2O_8^{2-}]^2$$

9. What is the numerical value of the rate constant for Reaction 2?

7.6 mol/L•sec 36 mol/L•sec C. 172 mol/L•sec

GO ON TO THE NEXT PAGE.

is our ory option.

15. A reaction has a rate constant $k = 8.54 \times 10^{-4} \text{ M}^{-1} \text{s}^{-1}$ at 45 °C, and an activation energy $E_a = 90.8 \text{ kJ}$. What is the value of k at 25 °C?

16. What is the mole fraction of CH₃OH in an aqueous solution that is 12.0 m in CH₃OH?

17. For the reaction, $2A + B \rightarrow C + D$, the rate law is: Rate = k[B].

Which of the following mechanisms is consistent with this information?

(A)
$$A + B \rightarrow M$$
 (slow) rate = $V(A)[B]$
 $A + M \rightarrow C + D$ (fast)

(B) $A + A \rightarrow M$ (fast) rate = $V(B)$ but oriented reaction is
$$B \rightarrow C + D$$
 (slow) $A + B \rightarrow C + D + M$
(C) $A + M \rightarrow M$ (fast) rate = $V(B)$ and oriented reaction is
$$V(A) = V(A)[B]$$

(D)
$$B \rightarrow M$$
 (fast)
 $A + M \rightarrow N$ (slow) rate = $K [A][M]$
 $N + A \rightarrow C + D$ (fast)

(E)
$$A + A \rightarrow M$$
 (slow)
 $M + B \rightarrow C + D$ (fast) $rate = k(A)^2$

- 18. Which of the following decreases with increasing intermolecular forces?
 - (A) Boiling point
 - (B) Molar enthalpy of vaporization ($\Delta_{\text{vap}}H^{\circ}$)
 - (C) Vapor pressure
 - (D) Viscosity
 - (E) Surface tension
- 19. The Henry's Law constant for oxygen gas in water at 25 °C $k_{O2} = 1.3 \times 10^{-3}$ M/atm. What is the partial pressure of O_2 above a solution at 25 °C with an O_2 concentration of 2.3×10^{-4} M at equilibrium?

$$S_g = K_H \cdot P_g$$

$$P_g = \frac{S_g}{K_H} = \frac{2.3 \times 10^{-4} \, \text{M}}{1.3 \times 10^{-3} \, \text{M}} = \frac{0.18 \, \text{atm}}{2.18 \, \text{atm}}$$

20. Which mixture of water and H_2SO_4 represents a solution with a concentration that is closest to 30% by mass H_2SO_4 ? 98, 089/mel

- (B) 1) mol $H_2SO_4 + 200 \text{ g } H_2O \sim 100/300 = 0.30$ polyalist and to daid W
- (C) $30 \text{ mol } H_2SO_4 + 0.70 \text{ kg } H_2O$
- (D) $0.30 \text{ mol } H_2SO_4 + 0.70 \text{ mol } H_2O$
- (E) $0.30 \text{ mol } H_2SO_4 + 100 \text{ mol } H_2O$
- 21. The vapor pressure of water at 31 °C is 33.7 mmHg. When you dissolve 931.0 g of acetone (CH₃COCH₃) in 32.50 kg of water, what is the vapor pressure of water over the solution at 31 °C?

22. The data below were collected for this reaction at 500 °C: CH3CN (g) \rightarrow CH3NC (g)

Time (hr)	[CH ₃ CN] (M)	lu [cH3CN]	5/[CH3CN]
0.0	1.000	0	12-5
5.0	0.794	-01231	1.259
10.0	0.631	-0.460	1.585
15.0	0.501	-0.691	1.996
20.0	0.393	-0.934	2,544
25.0	0.316	-1.152	3.165

a) What is the order of the reaction? Please briefly explain your reasoning.

Thos reaction to first order because as time increases in constant increments, so too does the realizer for bulch3CNJ. a graph of bulch3CNJ is time would be approximated linear.

b) What is the value of the rate constant at this temperature?

c) What is the half-life for this reaction (at the initial concentration)?

d) How long will it take for 90% of the CH3CN to convert to CH3NC?

23. During the winter, much of the salt you see melting ice is calcium chloride, which has a solubility of 74.5 g per 100.0g of cold water. What is the lowest temperature ice that calcium chloride salt can melt assuming complete dissociation?

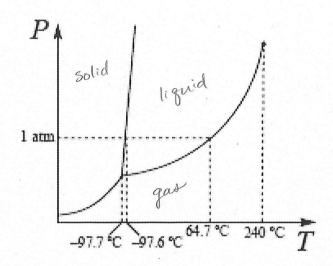
$$\Delta T_{fp} = K_{fp} m i \frac{0001}{1600} K_{fp} = -1.86 ° C/m$$

$$i = 301$$

$$m = 74.5 q \left(\frac{1 mod}{110.98 g}\right) = \frac{0.671 mod}{0.100 kg} = 6.71 m$$

24. The data shown below were collected for the second-order reaction:

$$Cl_2(g) + 2 H_2(g) \rightarrow 2 HCl(g) + H_2(g)$$


Temp. (K)	Rate Constant (M ⁻¹ s ⁻¹)	
90	0.00357	
100	0.0773	
110	0.956	

Please determine the activation energy and frequency factor for the reaction.

$$K = Ae$$

$$A = \frac{K}{e^{-\epsilon_{\alpha}/RT}} = \frac{0.00357 \text{ m·s}}{\left(e^{(0.008314)^{11} \text{ Most}}\right)^{40k}} = \frac{18.0 \times 10^{10} \text{ f}}{5} = \frac{4 \times 10^{10} \text{ most}}{5} = \frac{18.0 \times 10^{10} \text{ f}}{5} = \frac{18.$$

25. Below is the phase diagram of methanol:

- a) True or False:
 - i. _____ Solid methanol is denser than liquid methanol.
 - ii. F Solid methanol sublimes at atmospheric pressure.
 - iii. _____ Solid, liquid, and gaseous methanol cannot coexist at atmospheric pressure.

 - v. _____ It is possible to have gaseous methanol at 1 atm.
- b) What is the boiling point of methanol at atmospheric pressure? <u>(e4,7°</u>C
- c) What is the freezing point of methanol at atmospheric pressure? $\frac{-97.6 \, ^{\circ}\text{C}}{}$