Acid Base Equilibria Problem Set

Acids, Bases, Salts, pH (you may need to look up Ka and/or Kb value in your book

Hydrolysis reactions:

Write the general hydrolysis rxn for HA:

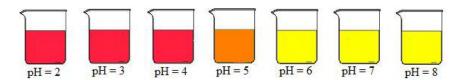
HA+ H20c) = H30 (as+ Acas) A- (arg)+H20= OH (ac)+HA

Write the general hydrolysis rxn for A-:

Some compounds are added to water to make solutions. Fill in the table with the requested information about the resulting solutions. (HSO $_4$ ⁵, H $_2$ CO $_7$, NH $_4$ ⁺, HF are all weak acids)

	Compound	Ions	Spectator	Ions that hydrolyze	pН	Net ionic equation to explain pH	
		present	ions	to affect pH	(<7, 7, >7)	9-	AH?
	Na ₂ SO ₄	2 Not-	Nat	S04	77	50g og + H2ge) = 18i	y cept off
	Na ₂ CO ₃	3500	70.4	(032c	77	CO32 1+ H2 PUST	HU301+OH
	NaCl	Not CT	לאט אט	sore]	24 20R >= +1/3 0 cm	40+Fay
	NH ₄ NO ₃	747 147 141	N03	12 Hert	J	N#11 (as)+450=	H30 + M
•	NaF	Not F	Nat	T T	フチ	F (me) + H2 0,0) =	HF + 04 (45)
4	(NH ₄) ₂ CO ₃	N/ky+	none	n NHqt \$	77	CO22- 4 H200 2	(c) (v)
`		500		(03	• (14 (02 - tott " (04	ະ)ຸ
						11	+
)		NH(1)	и

II. Why it is, if you need a little bit of OH- in solution, that it's smart to use NH₃(aq) instead of NaOH as your source of OH-? Support your answer with appropriate hydrolysis equations.


Source of by: Support your answer with appropriate hydrolysis equations.

1.0 M NaOH 15. 1.0 M NH3

1.0 M COHT

1. 1.0MCOHT

An indicator (HIn) is placed in several buffered solutions, pH 2 to 8.

Which of the beakers contain mostly HIn? Which contains mostly In-?

What is the ∼pKa of the indicator?

Acid Base Equilibria Problem Set

Write an equation to show the equilibrium of HIn with In in water.

HI + H = 130 + -

- IV. Salts
 - What is the pH of a 1.0 M solution of ammonium nitrate?

T = (axb) + (b) = Hf + fH = (xb) + f(xb) + f

Pott (3) (10 ft = 2)

- C.V.N

Acid Base Equilibria Problem Set