*A periodic table will also be provided for the exam

$$\pi = MRT$$

$$\Delta T = k_{\rm f} m$$

$$\Delta T = k_{\rm b} m$$

$$R = 0.08206 \frac{L.atm}{mol \ K}$$

 $P = Xsolvent P^{\circ}solvent$

$$[A]t = -kt + [A]o$$

$$t\frac{1}{2} = \frac{[A]o}{2k}$$

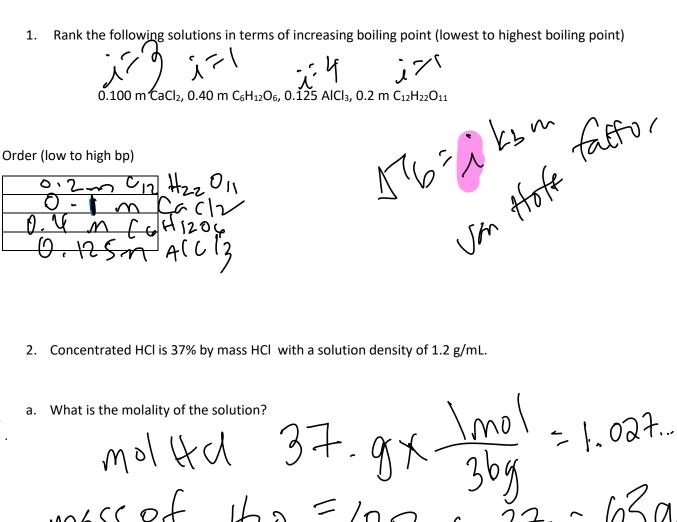
$$\ln[A] t = -kt + \ln[A] o$$

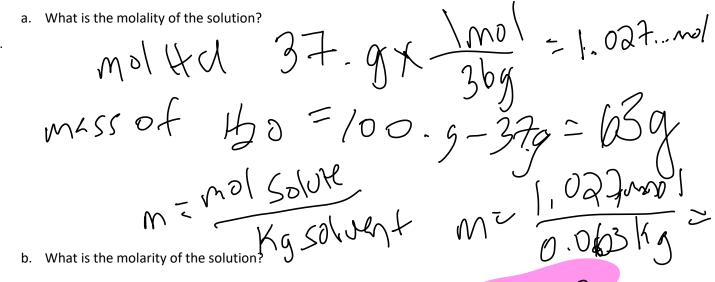
$$t\frac{1}{2} = \frac{0.693}{k}$$

$$\frac{1}{[A]t} = kt + \frac{1}{[A]o}$$

$$t\frac{1}{2} = \frac{1}{k[A]o}$$

$$Sgas = k_H Pgas$$


1 atm = 760 mm Hg = 760 torr


$$k = Ae^{-Ea/RT}$$

$$ln\frac{k2}{k1} = \frac{Ea}{R} \left(\frac{1}{T1} - \frac{1}{T2} \right)$$

$$R = 8.314 \frac{J}{mol \ K}$$

$$K = {}^{\circ}C + 273$$

M= molsolute
Lsolution
100.9/solution x low =
1.35

\$3.301

3. Myoglobin is a protein that uses a heme group to bind oxygen. A sample of myoglobin (a non-electrolyte) with a mass of 1.0 grams is dissolved in water for a final volume of solution of 100.0 mL. The osmotic pressure of the solution is 11.0 torr at 25.0°C. Find the molar mass of myoglobin.

2 293/L

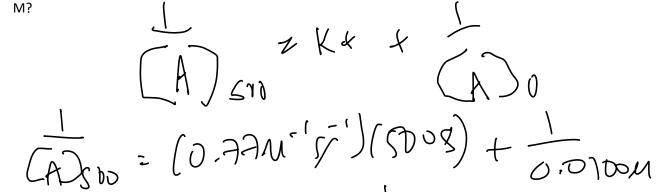
4. A certain reaction has a rate constant of 1.75 x 10-1 s-1 at 20.0 °C. What is the value of the rate constant (k) at 40.0 °C if Ea = 55.5 kJ/mol?

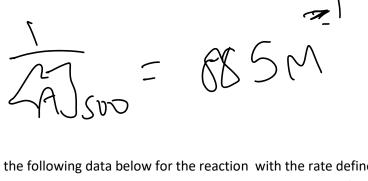
 $ext{ln(k_2)} = \frac{Ea}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$

enka-en(0.125)-55,500 /mgi. (1) 313K)

2, 24.35 4, 24.35 4, 24.35

the lab.	1 was som		
	Time (s)	ر [A], (M)	en[A])
second	0 ,51	1.00×10^{-2}	-4.61
	60	$C_{6.83 \times 10^{-3}}$	4.99
	120	5.18×10^{-3}	
	180	4.18×10^{-3}	
	240	3.50×10^{-3}	χ ⁽⁰ ο ς ;
	300	$ 3.01 \times 10^{-3} $	-2'81
	360	2.64×10^{-3}	L 5,94


a. What is the order of the reaction with respect to A? BRIEFLY explain you


cal what I of the first explain your reasoning.

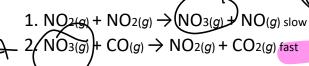
The first start of the first of th

PAH = 0.77 M S/A (see work)

c. What is the concentration of [A] after 500 seconds if the initial concentration [A]₀ was 0.0100

6. Given the following data below for the reaction with the rate defined as $\Delta[I-]/\Delta t$

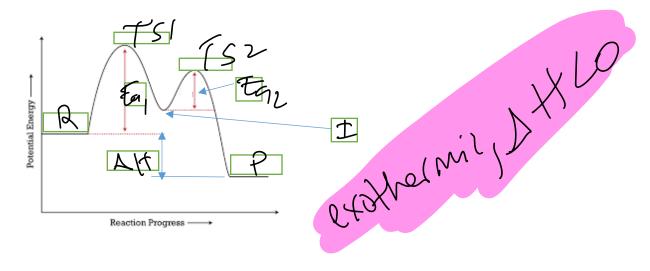
I⁻+OCl⁻ → IO	r+cl-	T' is Y	7
	1	l 2	3
[I-]	0.10	0.20	0.30
[OCI-]	0.050	0.050	0.010
Rate (M/ s ⁻¹)	3.05 × 10 ⁻⁴	6.20 ×10⁻⁴ \	1.83 × 10 ⁻⁴
	l	THE X2	


a. Determine the rate law for the reaction (SU $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$ What is the rate constant with units for the reaction?

-- K(J-)(OC(-) using exp#1 3.05 x10 M=(1/2) = ((0.05W) (.5)

7. You study the following reaction in the lab: $NO_2(q) + CO(q) \rightarrow NO(q) + CO_2(q)$ The experimental rate law is rate = $k[NO2]^2$

Answer the following questions regarding this reaction.


a. Is the following reaction mechanism consistent with the experimentally observed rate law, rate = $k[NO_2]^2$? Explain.

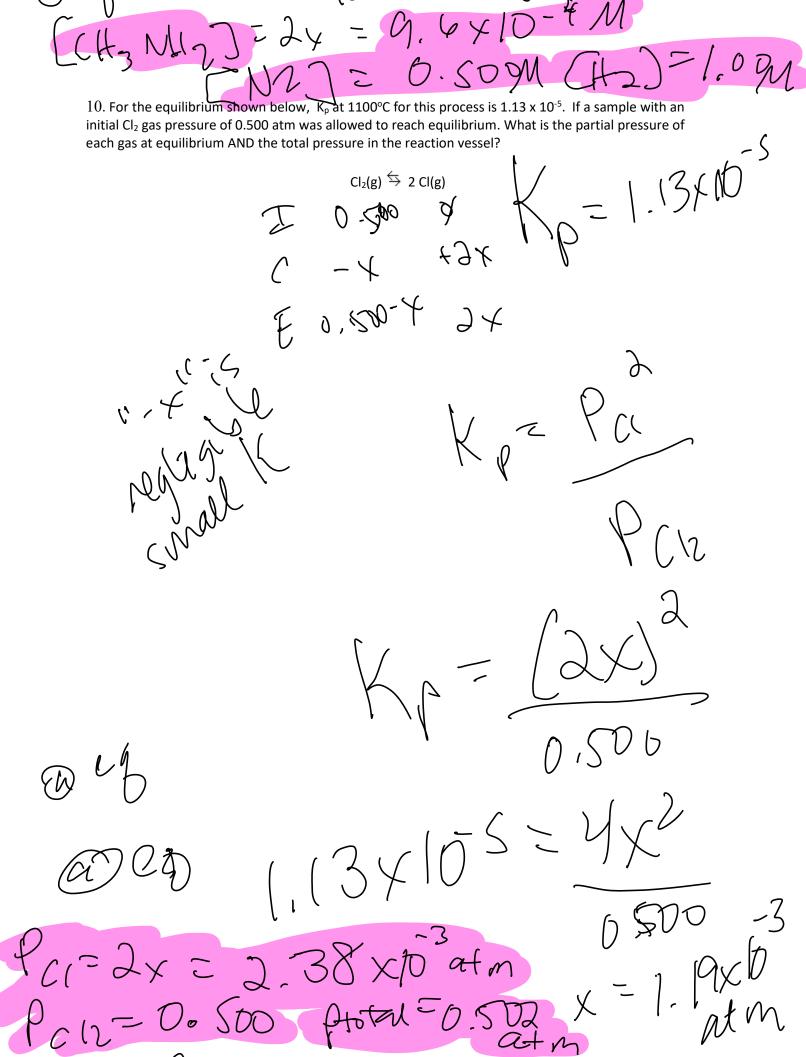
b. Please write a rate law for each elementary step in page a)

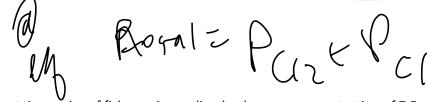
c. Circle the intermediate in the mechanism in part a

- d. Does this reaction mechanism use a catalyst? (Circle one) YES OR NO
 - 8. Please label the following reaction coordinate diagram below Reactants (R), products (P), transition state 1 (TS1), transition state 2 (TS2), activation energy for step 1(Ea1), activation energy for step 2 (Ea2), intermediate (I), and ΔH (including whether exo- or endothermic)

 $2C(s)+N_2(g)+5H_2\rightleftharpoons 2CH_3NH_2(g)$

 $K_c = 1.8 \times 10^{-6}$


If you begin the reaction with 1.0 mol of N₂, 2.0 mol of H₂, and sufficient C(s) in a 2.00 L container, what are the concentrations of N₂, CH₃NH₂, and H₂ at equilibrium?


of the terms of th

U. 824.4

√=≤

1.8×10-6×0.50>

11. A certain species of fish requires a dissolved oxygen concentration of 7.5 mg O_2 / L of water. Suppose the temperature of a lake in summer is 28.0°C. Would the fish be able to survive in this lake? The Henry's law constant (k_H is 1.2×10^{-3} M/atm) at this temperature. The partial pressure of oxygen gas is 0.17 atm at 28.0 C. Please show all your work.

$$S_g = (1.12 \times 10^{-3} \text{M}) (0.17 \text{M})$$

$$S_g = 1.9 \times 10^{-4} \text{M}$$

12. What is the vapor pressure if 50.0 grams of calcium chloride is dissolved in 500.0 mL of water (density of water is 1.0 g/mL) at 25.0 °C. The vapor pressure of water at 25.0 C is 23.8 torr.

140-500.0940×1mol=21.8 n (ad2 = 50.0 g/x 1mol = 0.455 ml

1 42 = 27.8 mol x 30.33 1 42 = 27.8 mol x 30.33

Jan = 23.86 (((0.953))