
Acids and Bases

Structure of Acids (Organic Acids)

Carboxylic acid group

Indicators

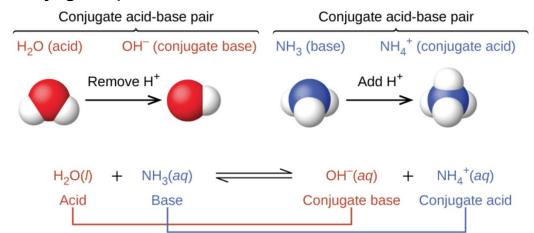
- Indicators are chemicals that change color depending on the solution's acidity or
- basicity.

Demo using butterfly pea flower

Definitions of Acids and Bases

- Arrhenius definition (review)
 - Based on H+ and OH-
 - Flawed, does not account for molecular bases such as ammonia (NH₃)
- Brønsted–Lowry definition (review)
 - Based on reactions in which H+ is transferred
 - This theory is used most often in Ch 104
- Lewis definition
 - Based on electron transfer
 - Will go over this definition later

Brønsted-Lowry Theory


- The acid is an H+ donor.
- The base is an H⁺ acceptor.
- In a Brønsted–Lowry acid–base reaction, the acid molecule donates an H⁺ to the base molecule.

$$H-A + :B \Leftrightarrow :A^- + H-B^+$$

Conjugate Acid—Base Pairs

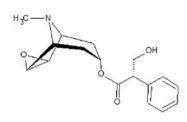
- In a Brønsted-Lowry acid-base reaction,
 - the original base becomes an acid in the reverse reaction.
 - the original acid becomes a base in the reverse process.

Each reactant and the product it becomes is called conjugate pair

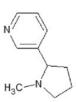
Bronsted Lowry

• HF (aq) +
$$H_2O \rightarrow H_3O^+$$
 (aq) + F^- (aq)

•
$$NH_3(aq) + H_2O \rightarrow OH- (aq) + NH_4^+$$


 What is the acid and base, conjugate base and conjugate acid?

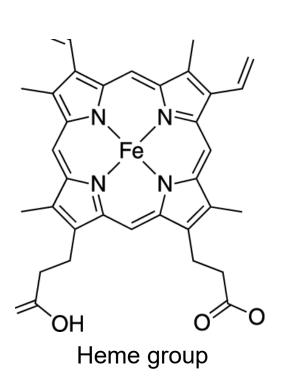
Amphoteric Substances


 Amphoteric substances can act as either an acid or a base because they have both a transferable H and an atom with lone pair electrons.

Application to medicine (alkaloids)

Morphine (benzylisoquinoline alkaloid)

Scopolamine (tropane alkaloid)

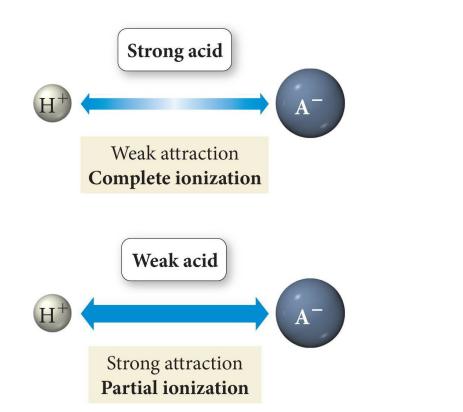


Nicotine (pyridine alkaloid)

Lewis Acid-Base Theory

- Lewis acid—base theory focuses on transferring an electron pair.
- Does NOT require H atoms
- The electron donor is called the Lewis base.
 - Electron rich; therefore nucleophile
- The electron acceptor is called the Lewis acid.
 - Electron deficient; therefore electrophile

Examples of Lewis Acid-Base Reactions



 $Ag^{+}_{(aq)} \stackrel{+}{}_{(aq)} 2 : NH_{3(aq)} \rightarrow Ag(NH_3)_2^+$

Lewis Lewis Acid Base

Complex ion!

Ionic Attraction and Acid Strength

Relationship between Bond Strength and Acidity

Acid	Bond Energy kJ/mol	Type of Acid
HF	565	weak
HCI	431	strong
HBr	364	strong

Strong versus weak acids

Autoionization of Water

- Water is amphoteric; it can act either as an acid or a base.
 - Therefore, there must be a few ions present.

- All aqueous solutions contain both H₃O+ and OH-.
 - The concentration of H₃O⁺ and OH[−] are equal in water.
 - $-[H_3O^+] = [OH^-] = 10^{-7}M$ at 25 °C, Kw = $[H_3O^+][OH^-]$

 $Kw = 1.00 \times 10^{-14}$ (equilibrium constant for autoionization of water)

Measuring Acidity: pH

- The acidity or basicity of a solution is often expressed as pH.
- pH = $-log[H_3O^+]$
- pH < 7 is acidic; pH > 7 is basic. pH = 7 is neutral.
- $[H_3O^+] = 10^{-pH}$

TABLE 15.6 The pH of Some Common Substances				
Substance	рН			
Gastric juice (human stomach)	1.0-3.0			
Limes	1.8-2.0			
Lemons	2.2-2.4			
Soft drinks	2.0-4.0			
Plums	2.8-3.0			
Wines	2.8-3.8			
Apples	2.9-3.3			
Peaches	3.4-3.6			
Cherries	3.2-4.0			
Beers	4.0-5.0			
Rainwater (unpolluted)	5.6			
Human blood	7.3-7.4			
Egg whites	7.6-8.0			
Milk of magnesia	10.5			
Household ammonia	10.5-11.5			
4% NaOH solution	14			

Example Problems Strong Acids and Bases

Weak acids (Example Problem)

Weak Bases (example problems)

Hydrolysis of Salts

Hydrolysis of Salts Example Problem

Example: What is the pH of a 0.0100 M solution of sulfuric acid?

Diprotic Acids (more than one ionization)