	(,)	at la	(mol)	=			
	10 x	ng A gt x lg	107.89 10 MO 10	aity	10 ppb =	9.3×10	-8 M
		J	10700	U	[00ppb =		
	1.	A concentration of 10-	100 ppb (1 μg/L)	mass of Ag ⁺ is			
		pools. Above 100 ppb	-				
		equilibrium concentrat be the best choice to u		_			
					i snow your work.	e zung e	+, +(\(\)
		AgBrcs) = A	g (ce) +B.	-	(/tg	$\frac{1}{\sqrt{2}}$	
	a	AgBr	b. AgCl		c. Agl	*	× 47
		-7			1 4	Briss = A	₹ ×
	7	XID'M	1/2/0	MEC		4 (sp = x	
	, ((/×10 /	(,	
	2. Three cations, Sr ⁺² , Cu ²⁺ and Ag ⁺ are separated using two different precipitating reagen						47 k
	2.	Three cations, Sr +2, Cu What precipitating reas		4		,	
			haller		ed to use ksp values	2+	,
		, , ,	12	U		J w	tadd
			51 2x a	ad CC			0H_
			(Agr) -		_/ ,	\	\rightarrow
				+	E/Ag Clas)	nt
					, at or	ργ.	g N+ ashka
			1 +	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sr) H	ane 1	
			Cu (off)s	\)	RJT	
						add	SOU
						C = a01	<u> </u>
	3.	Calculate the molar sol	ubility of AgI in (yo	ou will need to lo	ok up the Ksp for A	(gl)	
			1/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_ \ \ \ ' '		
			· · 2	,) × 10 = + ユ え)		
	a.	Water A +		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+ 1	(og)	۾
		Agi	-CS)	Hg Con	ろう	\varnothing	KcofX
		7		Ø		+×	1,2/2
		C		1×		\checkmark	V = 1 KgK
	b.	0.100 M NaI		X		\nearrow	X - 1
Į-							9 x 15 9 M
Na		٨	, _		1 + +	- J (ap)	1 ×10 /
	\	,00 r	Aglo	$S) \subseteq C$	Ag (az) `	0 108	
/x -) 0`		T \			Q, W	arore
$\langle \mathcal{Y} \rangle$	/				Ag (az) + A	+7	L , ,
			C		. /	0-1	∞
			E		7	0,	(0,10D)
					1	- (x))(O\(\O\)
					1	$\rho - \Gamma / \gamma$	\smile

 $\overline{}$

$$x = 8.5 \times 10^{-17}$$
 $x = 8.5 \times 10^{-16}$