Directions: You have two hours to complete this exam. This exam is closed book and electronic device. The only allowed device for this exam is a calculator. You may remove this equation sheet/periodic table. Make sure to write your name on the first page of the exam.

$$\pi = MRT$$
 $\Delta T = k_{\mathrm{f}} m$
 $\Delta T = k_{\mathrm{b}} m$
 $R = 0.08206 \ \frac{L.atm}{mol \ K}$
 $P = Xsolvent \ P^{\circ}solvent$

$$[A]t = -kt + [A]o$$

$$t\frac{1}{2} = \frac{[A]o}{2k}$$

$$\ln[A]t = -kt + \ln[A]o$$

$$t\frac{1}{2} = \frac{0.693}{k}$$

$$\frac{1}{[A]t} = kt + \frac{1}{[A]o}$$

$$t\frac{1}{2} = \frac{1}{k[A]o}$$

$$Sgas = k_H Pgas$$

 $1 atm = 760 mm Hg = 760 torr$

$$k = Ae^{-Ea/RT}$$

$$ln\frac{k2}{k1} = \frac{Ea}{R} \left(\frac{1}{T1} - \frac{1}{T2} \right)$$

$$R = 8.314 \frac{J}{mol \ K}$$

$$K = {}^{\circ}C + 273$$

VIIIA 8A	4.003	Š	Neon 20.180	18 A r	Argon 39.948	36	궃	Krypton 84.80	54	×	Xenon 131.29	98	몺	Radon 222.018	118		Ununoctium unknown
71 4 4	4 × 6		Fluorine 18.998	7	Chlorine 35.453	35	Ŗ	Bromine 79.904	53		lodine 126.904			Astatine 209.987	117	Uus	Ununseptium unknown
16 VIA	8 6A	0	Oxygen 15.999		Sulfur 32.066	34	Se	Selenium 78.09	52	o	Tellurium 127.6	84	Ъ	Polonium [208.982]	116	_	Ununpentium Livermorium [298]
15	5A 7	Z	Nitrogen 14.007	₹ •	Phosphorus 30.974	33		Arsenic 74.922		Sb	Antimony 121.760	83	洒	Bismuth 208.980	115	Onb	Ununpentium unknown
45 47	4 A	ပ	Carbon 12.011	4 (Silicon 28.086	32	Ge	Germanium 72.61	50	Sn	Tin 118.71	82	Pb	Lead 207.2	114	正	Flerovium [289]
13 4	3A II		Boron 10.811	13 A I	Aluminum 26.982	31	Ga	Gallium 69.732			Indium 114.818	81	F	Thallium 204.383	113	Uut	Ununtrium unknown
ents				Ş	2 8 6	30	Zn	Zinc 65.39	48	ၓ	Cadmium 112.411	80	Η̈́d	Mercury 200.59	112	S	Copernicium [277]
eriodic Table of the Elements				;	= == ==	29	Cn	Copper 63.546	47	Ad	Silver 107.868	79	Ρn	Gold 196.967	111	s Rg	Roentgenium [272]
of the				Ş	2	78	Ż	Nickel 58.693	46	Pd	Palladium 106.42	78	₹	Platinum 195.08	110		Darms [2
able				c	 "	27	ပိ	Cobalt 58.933	45	몺	Rhodium 102.906	77	<u></u>	Iridium 192.22	109	Ĭ	Meitnerium [268]
odic T				c	. \	. 56	Ъе	Iron 55.933			Ruthenium 101.07			Osmium 190.23		Ĥ	
Peric				r	\ NB K	25	Σ	Manganese 54.938	43	ည	Technetium 98.907	75	Re	Rhenium 186.207	107	Bh	Bohrium [264]
				ú	o 8 8	24	ပ်	Chromium 51.996	42	٥ <u>×</u>	Molybdenum 95.94	74	≥	Tungsten 183.85	106	Sg	Seaborgium [266]
					. R 8	133	>	Vanadium 50.942	41	Q N	Niobium 92.906	73	Ta	Tantalum 180.948	105	Dp	Dubnium [262]
				•	+ NB 4B	22	F	Titanium 47.88	40	Zr	Zirconium 91.224	72	Ŧ	Hafnium 178.49	104	¥	Rutherfordium [261]
				r	າ	21	Sc	Scandium 44.956	39	>	Yttrium 88.906	57-71			89-103		
	2A 4	Be	Beryllium 9.012	12 M	Magnesium 24.305	20	Ca	Calcium 40.078	38	S	Strontium 87.62	26	Ba	Barium 137.327	88	Ra	Radium 226.025
T IA IA	1.008	ت	Lithium 6.941	N N	Sodium 22.990	19	¥	Potassium 39.098	37	Rb	Rubidium 84.468	55	Cs	Cesium 132.905	87	Ļ	Francium 223.020

	22	28	29	09					65						71
Lanthanide	_ _	ပ္ပ	ے	ž	Pa	Sm	Д	ဥ်	<u>م</u>	2	욷	ш	٤	2	
	Lanthanum	Cerium	Praseodymium	Neodymium					Terbium	_					Lutetium
	138.906	140.115	140.908	144.24				\neg	158.925				\neg		174.967
	89	06	91	92			95		97			100		102	103
Actinide	Ac	f	Ра		Ž	Pu	Am	S	B	ŭ	ВS	E	ğ	å	ځ
201103	Actinium	Thorium	Protactinium		_		Americium		Berkelium			Fermium	_	Nobelium	Lawrencium
	227.028	232.038	231.036	$\overline{}$		$\overline{}$	243.061		247.070			257.095	$\overline{}$	259.101	[262]

Ch 104 Summer 2024 Exam 1 Friday July 19th Watkins

Name	•			
Ivallie	•	 	 	

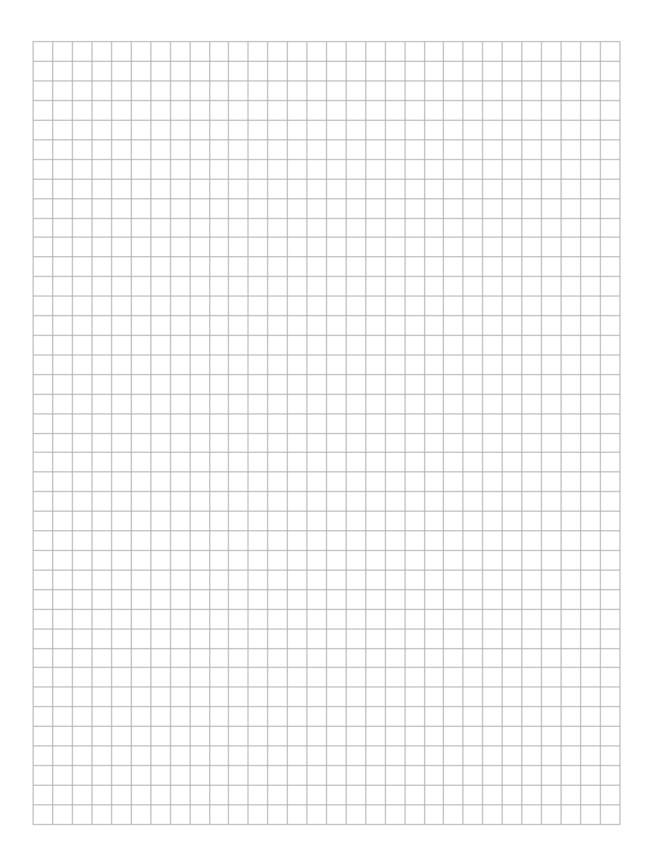
1. When 14.7 grams of a compound (a non-electrolyte) is dissolved in 941.4 grams of benzene (C_6H_6) the new freezing point is 4.90 °C. The freezing point of pure benzene is 5.50 °C and the k_f of benzene is 5.12 °C. What is the molar mass of the organic compound? (10 pts)

2.	Sea water has a sodium chloride concentration of 3.5 grams of NaCl/100.0 mL of solution. The
	osmotic pressure of blood is 7.1 atm at 37.0°C. Does sea water have the same osmotic pressure
	as blood if it is at 37.0 °C? Yes or no? AND show all calculations used to determine your
	answer. (8 pts)

3. Concentrated nitric acid has a concentration of 67% by mass (67 grams of HN solution). The density of this solution is 1.40 g/mL . Answer the following qu	
a. What is the mole fraction of water?	
b. What is the molarity?	
c. What is the molality?	

4. A student obtained the following data for decomposition of hydrogen peroxide, $2H_2O_2$ (I) \Rightarrow $2H_2O$ (I)+ O_2 (g)

Answer the following questions. Graphs ARE NOT required but graph paper is provided on the next page if you want to make plots. The student wants to determine the rate law, rate = $k[H_2O_2]^m$. (10 pts)


Time (s)	[H ₂ O ₂] mol/L	
0	1.0	
120	0.91	
300	0.78	
600	0.59	
1200	0.37	
1800	0.22	
2400	0.13	
3000	0.082	
3600	0.050	

a. Is the reaction zero, first or second order with respect to hydrogen peroxide?

b. What is the rate law and rate constant with units?

c. What is the concentration of hydrogen peroxide after 5000.0 seconds?

d. Describe two ways to increase the rate of the reaction for decomposition of hydrogen peroxide.

5.	Determine whether each of the following solutes are miscible in water or hexane (C_6H_{14}) and explain your choice. (6 pts)
a.	Potassium iodide
b.	Acetic Acid (CH₃COOH)
C.	Benzene (C ₆ H ₆)

6.	Given the proposed mechanism for the reaction below answer the following questions.	(10
	pts)	

$$H_2(g)+2ICl(g)\longrightarrow I_2(g)+2HCl(g) \Delta H<0$$

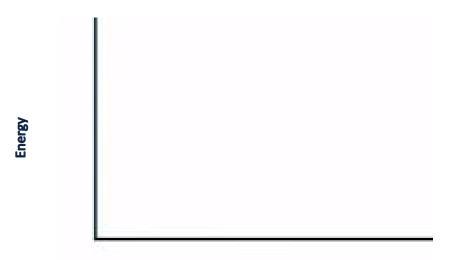
Experimental rate law: rate= k[H₂][ICl]

Step 1 (slow)
$$H_{2(g)}+ICl(g) \longrightarrow HI(g)+HCl(g)$$

Step 2 (fast)
$$HI(g)+ICl(g)\longrightarrow I_{2(g)}+HCl(g)$$

a. Write a rate law for each elementary step

Step 1:


Step 2:

b. Is the proposed mechanism is valid for the reaction studied in the lab and experimentally determined rate law? Yes or No and explain your answer.

c. What molecule is the intermediate for this reaction mechanism?

6 continued

d. Draw and label a reaction coordinate diagram for the reaction mechanism from #6. You can use the following abbreviations (P for products, R for reactants, TS1 and TS2 for transition state for step 1 and step 2 Ea1 and Ea2 for activation energy for step 1 and step 2, and ΔH).

Reaction progress

7. Given the data below please answer the following questions, make sure to include the rate constant with units. The reaction is: NH_4^+ (aq) + NO_2^- (aq) $\rightarrow N_2$ (g) + $2H_2$ O (I) and the reaction rate is defined at rate = $-\Delta[NH_4^+]/\Delta t$. (10 pts)

Experiment	[NH ₄ ⁺]	[NO ₂ -]	Initial rate (mol/L-s)
1	0.100 M	0.0050 M	1.35 x 10 ⁻⁷
2	0.100 M	0.010 M	2.70 x 10 ⁻⁷
3	0.200 M	0.010 M	5.40 x 10 ⁻⁷

a. What is the rate law for this reaction?

b. What is the rate constant (k)?

c. What is the rate of the reaction if the concentration of ammonium ion and nitrite ion are 0.100 M?

The reaction, $C_4H_8(g) \longrightarrow 2C_2H_4(g)$, has an activation energy of 262 kJ/mol. At 327.0 °C, the rate constant, k, is 6.1×10^{-8} s-1. What is the value of the rate constant at 300.0 °C? (8 pts)

9.		prium constant (Kp) for the reaction $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$ at 100 °C is 2.2 x 10 ¹⁰ . The following questions (10 pts).
	a.	If the initial pressure is 0.100 atm for $COCl_2$ what is the partial pressure of each gas at equilibrium?
	b.	Is this equilibrium reactant or product favored? Briefly explain your answer.
	c.	If the volume of the reaction vessel is decreased which direction will the reaction shift (reactants or products) to offset the stress and re-establish equilibrium?

10. When 0.0322 moles of NO gas and 1.70 grams of bromine gas are placed in a 2.00 L reaction vessel at 25.0°C, the equilibrium pressure of NOBr was 0.438 atm. What is the equilibrium constant, Kp, at 25.0°C? **PV=nRT (8 pts)**

$$2NO(g) + Br_2(g) \rightleftharpoons 2NOBr(g)$$

11.	For the following reaction: $H_{2(g)} + I_2(g) \Rightarrow 2HI(g)$, $\Delta H < 0$ determine whether the reaction will shift towards the reactants, products or neither. (6 pts)
a.	Increase in pressure
b.	Increase in temperature
c.	Addition of hydrogen gas
d.	Removal of iodine gas

12. At 0.0°C the solubility of oxygen gas is 0.0221 M at a pressure of 1.0 atm. At the same temperature, 0.0°C if the pressure is increased to 5.0 atm what mass of oxygen gas can be dissolved in two liters of water? (6 pts)
BONUS (2 pts)
If you had to name a cat what periodic element name would you give the cat and why? For example my cat's Argon because he is just like a noble gas content and doesn't want to interact (aka react) with any other cats.