Wednesday, July 20, 2016

Chapter 17

Something to keep in mind: When **equal** amounts of acid and base are mixed (at the equivalence point) the resulting solution will behave as follows:

Strengths of Acid and Base	Resulting Solution pH
Strong Acid + Strong Base	7 (Neutral)
Strong Acid + Weak Base	< 7 (Acidic)
Weak Acid + Strong Base	> 7 (Basic)
	< 7 if acid's $K_a > $ base's K_b
Weak Acid + Weak Base	= 7 if acid's K_a = base's K_b
	$>$ 7 if acid's K_a < base's K_b

1. Practice with the common ion effect: In the lab you make a solution that is 0.0048 M HNO₂ and 0.00056 M LiNO₂. What is the pH of your solution?

- 2. Which of the following can form a buffer?
 - a. HCl and CH₃COOH
 - b. H₂CO₃ and NaHCO₃
 - c. NaOH and NaCl
 - d. NaCH3COCOO and CH3COCOOH
 - e. HClO and KClO
- 3. Ascorbic acid, $H_2C_6H_6O_6$ (s), is a diprotic acid with K_1 of 7.9 x 10^{-5} and K_2 of 1.6 x 10^{-12} . In a 0.005 M aqueous solution of ascorbic acid, which of the following species is present in the lowest concentration?
 - a. H₂O (l)
 - b. H_3O^+ (aq)
 - c. $H_2C_6H_6O_6$ (aq)
 - d. $HC_6H_6O_6^{-1}$ (aq)
 - e. $C_6H_6O_6^{2-}$ (aq)

4. Determine the pH of an HCN/KCN buffer containing 0.100 mol HCN and 0.070 mol KCN before and after the addition of 50.0 mL of 0.100M HCl to 1.00 L of buffer. $$\rm K_a$$ for HCN is 4.79×10^{-10}

5. A 25.0 mL sample of 0.175 M methylamine (CH₃NH₂, a weak base, $K_b = 4.4 \times 10^{-4}$) is titrated with 0.150 M HBr. What is the pH at one-half of the equivalence point?

6. Please circle the best acid to combine with its sodium salt to make a solution buffered at pH 4.25. For the best choice, please calculate the ratio of the conjugate base to the acid required to attain the desired pH.

Chlorous acid, $HClO_2$ p $K_a = 1.95$ Formic acid, $HCHO_2$ $pK_a = 3.74$ Hypochlorous acid, HClO $pK_a = 7.54$

- 7. What change will be caused by addition of a small amount of HCl to a solution containing fluoride ions and hydrogen fluoride?
 - a. The concentration of hydronium ions will increase significantly.
 - b. The concentration of fluoride ions will increase as will the concentration of hydronium ions.
 - c. The concentration of hydrogen fluoride will decrease and the concentration of fluoride ions will increase.
 - d. The concentration of fluoride ions will decrease and the concentration of hydrogen fluoride will increase.
 - e. The fluoride ions will precipitate out of solution as their acid salt.