Chapter 17

1. A 1.0-L buffer solution contains 0.100 mol acetic acid and 0.100 mol sodium acetate. The value of K_a for acetic acid is 1.8 x 10⁻⁵. Calculate the new pH after adding 0.010 mol of solid NaOH to the buffer. For comparison, calculate the pH after adding 0.010 mol of solid NaOH to 1.0 L of pure water.

- 2. A 500.0-mL buffer solution is 0.100 M in HNO_2 and 0.150 M in KNO_2 . Determine if each addition would exceed the capacity of the buffer to neutralize it.
 - a. 2.50 g NaOH
 - b. 1.25 g HBr
 - c. 3.60 g KOH
 - d. 1.35 g HI
- 3. A chemist has synthesized a monoprotic weak acid and wants to determine its K_a value. To do so, the chemist dissolves 2.00 millimoles of the solid acid in 100.0 mL of water and titrates the resulting solution with 0.0500 M NaOH. After 20.0 mL NaOH has been added, the pH is 6.00. What is the K_a value for the acid?

4.	Find the pH at each of the following points in the titration of 25 mL of 0.30 M HF with 0.30 M NaOH. The Ka HF= 7.2×10^{-4}
	a. Before adding NaOH
	b. After adding 10.00 mL of NaOH
	c. At ½ equivalence point
	d. At the equivalence point
	e. After adding 28.00 mL of NaOH
5.	A solution is prepared by adding 750.0 mL of 4.00×10^{-3} M Ce(NO ₃) ₃ to 300.0 mL of 2.00 x 10^{-2} M KIO ₃ . Will Ce(IO ₃) ₃ ($K_{Sp} = 1.9 \times 10_{-10}$) precipitate from this solution?