## Solubility Equilibria

- All ionic compounds dissolve in water to some degree.
  - However, many compounds have such low solubility in water that we classify them as insoluble.

#### Calculating Ksp from molar solubility

Determine the  $K_{sp}$  of silver bromide, given that its molar solubility is 5.71 x  $10^{-7}$  moles per liter.

#### Calculating molar solubility from Ksp

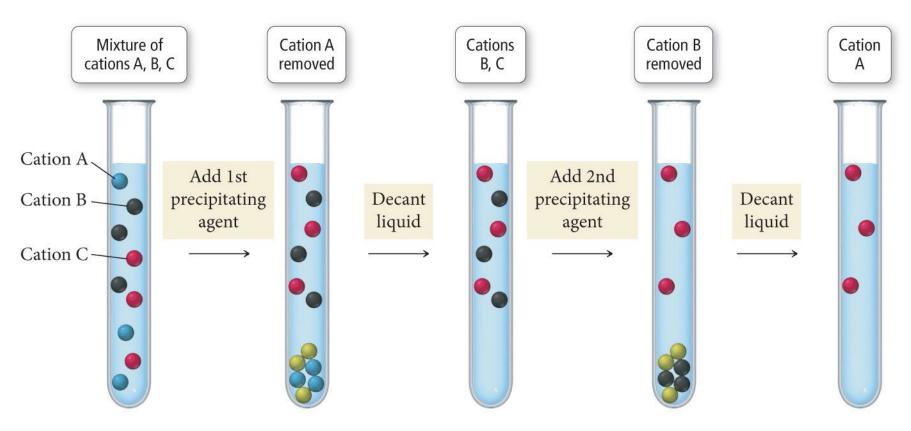
Calculate the molar solubility of calcium hydroxide if the Ksp is  $6.5 \times 10^{-6}$ 

Common ion 0.100 M *F-(aq)* 

$$CaF_2(s) \Longrightarrow Ca^{2+}(aq) + 2 F^-(aq)$$

Equilibrium shifts left

What is the molar solubility of CaF<sub>2</sub> in a solution containing 0.100 M NaF?

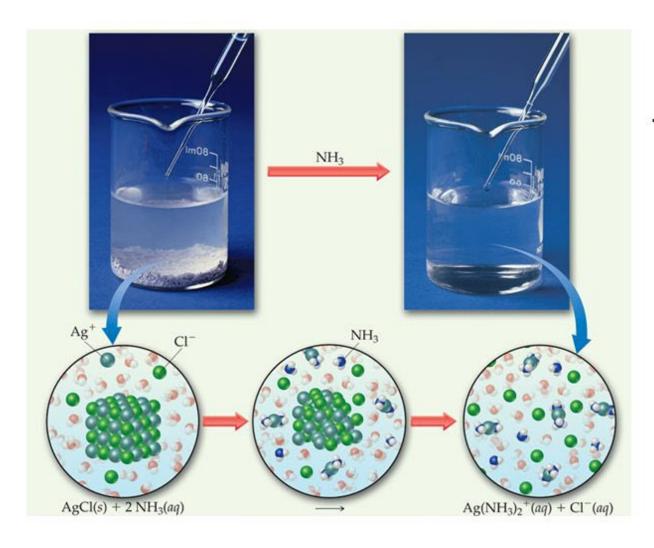

#### Precipitation

- $Q = K_{sp}$ , the solution is saturated, no precipitation
- $Q < K_{sp}$  the solution is unsaturated, no precipitation
- $Q > K_{\rm sp}$ , the solution would be above saturation, the salt above saturation will precipitate.

## Predicting Precipitation Reactions by Comparing Q and $K_{\rm sp}$

A solution containing lead(II) nitrate is mixed with one containing sodium bromide to form a solution that is 0.0150 M in Pb(NO<sub>3</sub>)<sub>2</sub> and 0.00350 M in NaBr. Does a precipitate form in the newly mixed solution?

# Qualitative Analysis




## Table 19.4 Formation Constants ( $K_f$ ) of Some Complex Ions at 25 C

| The McGilley Hill |  |  |  |  |
|-------------------|--|--|--|--|
|                   |  |  |  |  |
|                   |  |  |  |  |

| Complex Ion                                     | K                    |  |  |
|-------------------------------------------------|----------------------|--|--|
| Ag(CN)2-                                        | $3.0 \times 10^{20}$ |  |  |
| $Ag(NH_3)_2^+$                                  | $1.7 \times 10^{7}$  |  |  |
| $Ag(S_2O_3)_2^{3-}$                             | $4.7 \times 10^{13}$ |  |  |
| AIF <sub>6</sub> <sup>3-</sup>                  | $4 \times 10^{19}$   |  |  |
| Al(OH) <sub>4</sub>                             | $3 \times 10^{33}$   |  |  |
| Be(OH) <sub>4</sub> 2-                          | $4 \times 10^{18}$   |  |  |
| CdI <sub>4</sub> <sup>2-</sup>                  | $1 \times 10^{6}$    |  |  |
| Co(OH) <sub>4</sub> 2-                          | $5 \times 10^{9}$    |  |  |
| Cr(OH) <sub>4</sub>                             | $8.0 \times 10^{29}$ |  |  |
| Cu(NH <sub>3</sub> ) <sub>4</sub> <sup>2+</sup> | $5.6 \times 10^{11}$ |  |  |
| Fe(CN),4-                                       | $3 \times 10^{35}$   |  |  |
| Fe(CN) <sub>6</sub> <sup>3-</sup>               | $4.0 \times 10^{43}$ |  |  |
| Hg(CN) <sub>4</sub> <sup>2-</sup>               | $9.3 \times 10^{38}$ |  |  |
| Ni(NH <sub>3</sub> ) <sub>6</sub> <sup>2+</sup> | $2.0 \times 10^{8}$  |  |  |
| Pb(OH)3-                                        | $8 \times 10^{13}$   |  |  |
| Sn(OH)3-                                        | $3 \times 10^{25}$   |  |  |
| Zn(CN) <sub>4</sub> <sup>2-</sup>               | $4.2 \times 10^{19}$ |  |  |
| $Zn(NH_3)_4^{2+}$                               | $7.8 \times 10^{8}$  |  |  |
| Zn(OH) <sub>4</sub> <sup>2-</sup>               | $3 \times 10^{15}$   |  |  |

### Complex Ions



The formation of these complex ions increases the solubility of these salts.

Other ways to increase solubility of "insoluble" salts