Directions: You have two hours to complete this exam. This exam is closed book and electronic device. The only allowed device for this exam is a calculator. You may remove this equation sheet/periodic table. Make sure to write your name on the first page of the exam.

$$\pi = MRT$$

$$\Delta T = k_{\rm f} m$$

$$\Delta T = k_{\rm b} m$$

$$R = 0.08206 \frac{L.atm}{mol \ K}$$

 $P = Xsolvent P^{\circ}solvent$

$$[A]t = -kt + [A]o$$

$$t\frac{1}{2} = \frac{[A]o}{2k}$$

$$\ln[A]t = -kt + \ln[A]o$$

$$t\frac{1}{2} = \frac{0.693}{k}$$

$$\frac{1}{[A]t} = kt + \frac{1}{[A]o}$$

$$t\frac{1}{2} = \frac{1}{k[A]o}$$

$$Sgas = k_H Pgas$$

 $1 atm = 760 mm Hg = 760 torr$

$$k = Ae^{-Ea/RT}$$

$$ln\frac{k2}{k1} = \frac{Ea}{R} \left(\frac{1}{T1} - \frac{1}{T2} \right)$$

$$R = 8.314 \frac{J}{mol\ K}$$

$$K = {}^{\circ}C + 273$$

8A BA Helium 4.003	Neon Neon 180	Argon	Krypton 84.80	54 Xenon Xenon 131.29	Radon 22.018	UUO Jnunoctium unknown
17 VIIA 7	9 00	Chlorine 35.453		ine	tine 987	
	<u>ი</u>				∞	
16 VIA 6A	8 Oxygen 15.999	16 Sulfur 32.066		52 Te Tellurium 127.6		_
15 VA 54	7 Nitrogen 14.007	15 Phosphorus 30.974	33 AS Arsenic 74.922	51 Sb Antimony 121.760	83 Bi Bismuth 208.980	Uup Ununpentium unknown
4 V 4 A 4 A	6 Carbon 12.011	14 Silicon 28.086	32 Ge Germanium 72.61	Sn Fin 118.71	82 Pb Lead 207.2	114 Flerovium [289]
13 3A	5 Boron 10.811	13 Aluminum 26.982	31 Gal 69.732			
ents		12 IIB 28	30 Zn Zinc 65.39	Cd Cadmium 112.411	80 Н д метсшу 200.59	Copernicium
Elem		1 8 8	7 : 9		Au Gold 196.967	E
odic Table of the Elements		۽ ۽	28 Nickel 58.693	Pd Palladium 106.42	78 Pt	DS Damstadtium F [269]
able c		6 8		Rhodium 102.906	77	
dic T		® (26 Fe lron 55.933	Ruthenium 101.07	76 OS 0smium 190.23	Hassium [269]
Perio		7 VIIB 7B	Mn Manganese 54.938	Tchnetium 98.907	75 Re Rhenium 186.207	107 Bh Bohrium [264]
				Mobbdenum		
			Vanadium 50.942	Niobium 92.906	73 Ta Tantalum 180.948	105 Db Dubnium [262]
		4 √ 8 8 8 4	22 Ti Titanium 47.88	Zirconium 91.224	72 Hafnium 178.49	Pf Rutherfordium [261]
			21 Scandium 44.956	39 Yttrium 88.906	57-71	89-103
2 H 2	Beryllium 9.012			38 Strontium 87.62		i
1 T Hydrogen 1.008	Lithium 6.941			Rubidium 84.468		

	57	58	59	09	91		63			99	\Box			70	71
nthanide Series	La	Ç	ፈ	Ž	Pa	Sm	En	р б	Тb	2	욷	щ	٤	Ϋ́	Ľ
	Lanthanum 138.906	Cerium 140.115	Praseodymium 140.908	Neodymium 144.24	Promethium 144.913		Europium 151.966	_		Dysprosium 162.50				Ytterbium 173.04	Lutetium 174.967
	88	06	91	92			95	96	97	86		100	101	102	103
ctinide	Ac	f	Pa		٩	Pu	Am	Ę	BK	ರ	Es	FB	P W	å	تـ
3	Actinium 227.028	Thorium 232.038	Protactinium 231.036	Uranium 238.029			Americium 243.061	Curium 247.070	Berkelium 247.070	Californium 251.080		Fermium 257.095	Mendelevium 258.1	Nobelium 259.101	Lawrencium [262]

Name: AND SUCK FEE	
--------------------	--

1. When 14.7 grams of a compound (a non-electrolyte) is dissolved in 941.4 grams of benzene (C₆H₆) the new freezing point is 4.90 °C. The freezing point of pure benzene is 5.50 °C and the k_f of benzene is 5.12 °C. What is the molar mass of the organic compound? (10 pts)

$$\Delta T f = k f m$$

$$-(4.90 \cdot C - 5.50 \cdot C) = 5.12 \frac{m}{c} (m)$$

$$0.60 \cdot C = 5.12 \frac{m}{c} (m)$$

$$m = 0.60 \cdot 4 = 5.12 \cdot 4 m$$

$$sover = 0.11718...m$$

0.11718molx 0.941419

molar mass=

2. Sea water has a sodium chloride concentration of 3.5 grams of NaCl/100.0 mL of solution. The osmotic pressure of blood is 7.1 atm at 37.0°C. Does sea water have the same osmotic pressure as blood if it is at 37.0 °C? Yes or no? AND show all calculations used to determine your answer. (8 pts)

TITIMRT

3.59 Nacl x 1mol x 1= 589 0.100

0.603mol

T(=(2)(0.603M)(0.082064-atm)(310K)
310K

NO 1 1 2+ 31 atmis
77 7, 1 atm
for 6100d

- 3. Concentrated nitric acid has a concentration of 67% by mass (67 grams of HNO₃/100.0 g of solution). The density of this solution is 1.40 g/mL. Answer the following questions (8 pts)

a. What is the mole fraction of water?
$$1.83$$
 1.83 1.8

100, gx [ml 1,40g -

c. What is the molality?

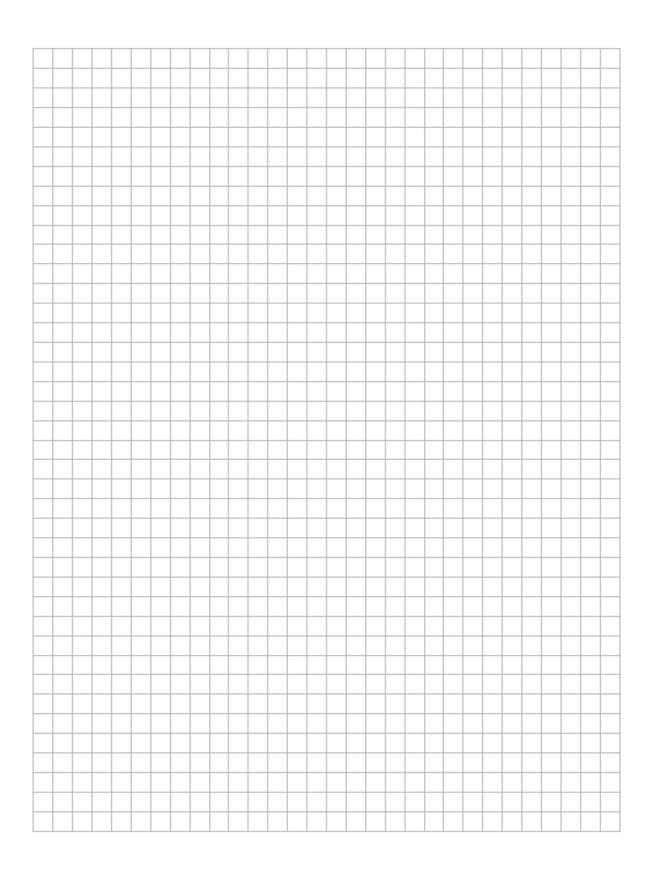
m=mol solute Ky solvent

4. A student obtained the following data for decomposition of hydrogen peroxide, $2H_2O_2(I) \rightarrow 2H_2O(I) + O_2(g)$ Answer the following questions. Graphs ARE NOT required but graph paper is provided on the next page if you want to make plots. The student wants to determine the rate law, rate = $k[H_2O_2]^m$. (10 pts)

Time (s)	[H ₂ O ₂] mol/L	
0	1.0	
120	0.91	
300	0.78	
600	0.59	
1200	0.37	
1800	0.22	
2400	0.13	
3000	0.082	
3600	0.050	

a. Is the reaction zero, first or second order with respect to hydrogen peroxide?

1st order masks to the constants


b. What is the rate law and rate constant with units?

rate = 7,9+10 s [H202]

1202] = -7,9x10 5 5 .50015 + 5 (420)

Describe two ways to increase the rate of the reaction for decomposition of hydrogen peroxide.

Ha Or Walth the Composition of hydroge watched the

5.	Determine whether each of the following solutes are miscible in water or hexane (C_6H_{14}) and explain your choice. (6 pts)
	× /°
a.	Potassium iodide
U	nater Kt I-
	interacts in a non-dipole IMFs
b.	Acetic Acid (CH ₃ COOH) Acetic Acid (CH ₃ COOH)
C.	Benzene (C ₆ H ₆)
	non-polar Musable of Nexame Maa LOF IMF

6. Given the proposed mechanism for the reaction below answer the following questions. (10 pts)

$$H_2(g)+2ICl(g)\longrightarrow I_2(g)+2HCl(g) \Delta H<0$$

Experimental rate law: rate= k[H₂][ICl]

Step 1 (slow)
$$H_{2(g)}+ICl(g) \longrightarrow HI(g)+HCl(g)$$

Step 2 (fast)
$$HI(g)+ICl(g) \rightarrow I_{2(g)}+HCl(g)$$

a. Write a rate law for each elementary step

Step 1:

Step 2:

b. Is the proposed mechanism is valid for the reaction studied in the lab and experimentally determined rate law? Yes or No and explain your answer.

Yes blc sm of steps = over 1) H2+ TU -> HZ + HQ + HZ+ IU -> IZ+HU + HZ+ IU -> T2+C

2) The RPS, Slow Step,

c. What molecule is the intermediate for this reaction mechanism?

HI(O)

asexprate

6 continued

d. Draw and label a reaction coordinate diagram for the reaction mechanism from #6. You can use the following abbreviations (P for products, R for reactants, TS1 and TS2 for transition state for step 1 and step 2 Ea1 and Ea2 for activation energy for step 1 and step 2, and ΔH).

Reaction progress Workship

7. Given the data below please answer the following questions, make sure to include the rate constant with units. The reaction is: NH_4^+ (aq) + NO_2^- (aq) $\rightarrow N_2$ (g) + $2H_2O$ (I) and the reaction rate is defined at rate = $-\Delta[NH_4^+]/\Delta t$. (10 pts)

Experiment	[NH ₄ ⁺]	[NO ₂ -]	Initial rate (mol/L-s)
1	0.100 M	0.0050 M \sim 7	1.35 x 10 ⁻⁷
2	0.100 M — ງ	0.010 M	2.70 x 10 ⁻⁷
3	0.200 M	0.010 M	5.40 x 10 ⁻⁷

a. What is the rate law for this reaction?

c. What is the rate of the reaction if the concentration of ammonium ion and nitrite ion are 0.100 M?

rate= 2.7 x 10 - 4 / 5 (0, hour) (0,

8. The reaction, $C_4H_8(g) \rightarrow 2C_2H_4(g)$, has an activation energy of 262 kJ/mol. At 327.0 °C, the rate constant, k, is 6.1×10^{-8} s-1. What is the value of the rate constant at 300.0 °C? **(8 pts)**

$$ln(k_2) = \frac{Ea}{12} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$$

$$lnk_{2} - ln(6.1x10) = \frac{262,0000 \text{ Imol}}{(8.314)}$$

$$+16.6$$

$$\frac{1}{573} - \frac{1}{600}$$

$$\frac{1}{373} = e^{-19.2}$$

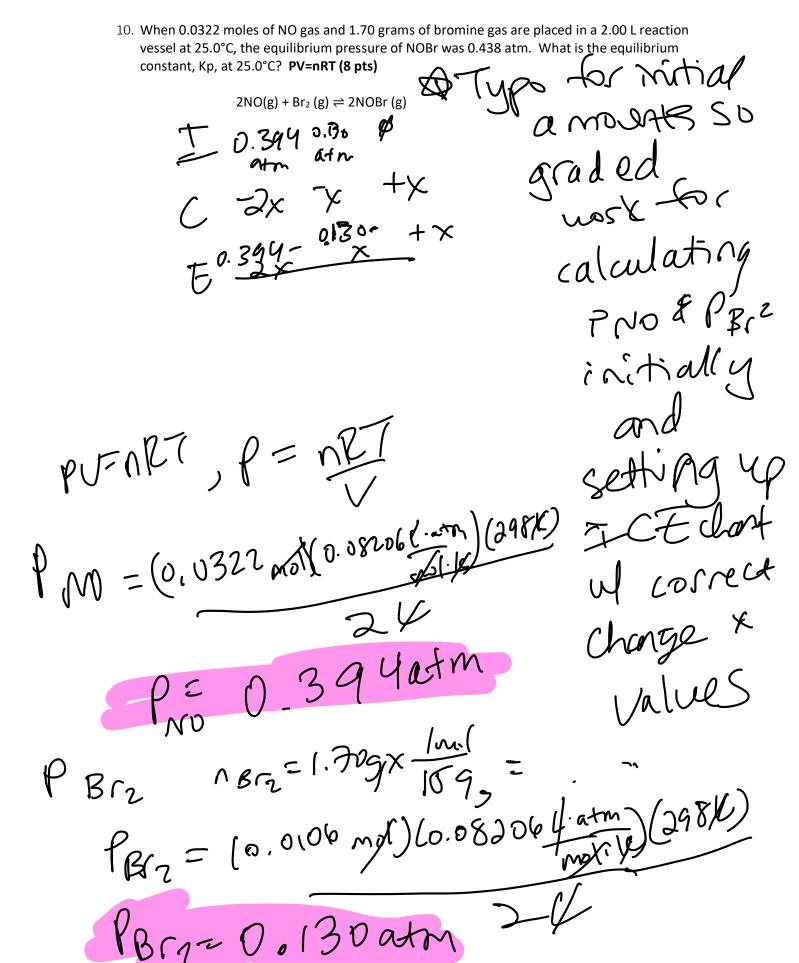
- 9. The equilibrium constant (Kp) for the reaction $COCl_2(g) \rightleftharpoons CO(g) + Cl_2(g)$ at 100 °C is **2.2 x 10** ⁻⁻¹⁰. Answer the following questions **(10 pts).**
 - a. If the initial pressure is 0.100 atm for COCl₂ what is the partial pressure of each gas at equilibrium?

$$K_{P}=2.2\times10^{-1}$$
, o

 $C_{O}C_{IZG_{O}}$
 $C_{O}C_{IZG_{O}}$

b. Is this equilibrium reactant or product favored? Briefly explain your answer.

KLLLI reactant favored and as con be seen from part a the P co & P C/z products is new, very small @ =


c. If the volume of the reaction vessel is decreased which direction will the reaction shift (reactants or products) to offset the stress and re-establish equilibrium?

reactants IV The Proces
wifts to side of gas. Sh

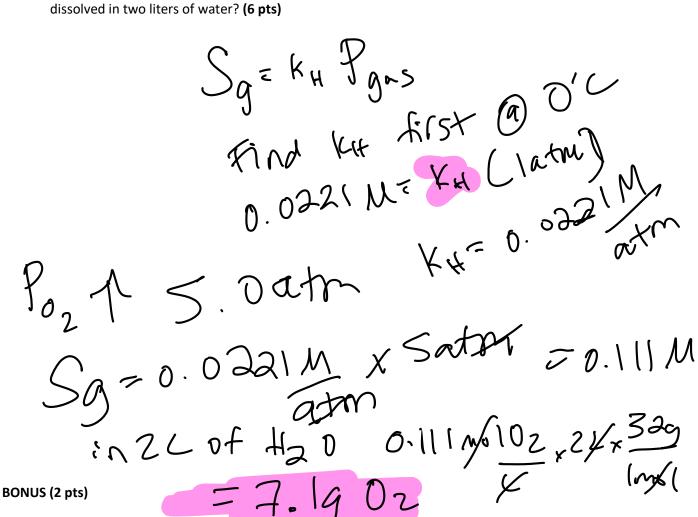
wast moles of gas. Sh

least moles of gas. Sh

e-establishing
lawinning

- 11. For the following reaction: $H_{2(g)} + I_{2}(g) \rightleftharpoons 2HI(g)$, $\Delta H < 0$ determine whether the reaction will shift towards the reactants, products or neither. (6 pts)
- a. Increase in pressure

b. Increase in temperature


moles of gaseons readonts; woles of moles of gaseons readonts; anotes of moles of mo

c. Addition of hydrogen gas

d. Removal of iodine gas

shift left Creatants

12. At 0.0°C the solubility of oxygen gas is 0.0221 M at a pressure of 1.0 atm. At the same temperature, 0.0°C if the pressure is increased to 5.0 atm what mass of oxygen gas can be dissolved in two liters of water? (6 pts)

If you had to name a cat what periodic element name would you give the cat and why? For example, my cat's Argon because he is just like a noble gas content and doesn't want to interact (aka react) with any other cats.

Lenon & Argon
My Cats &