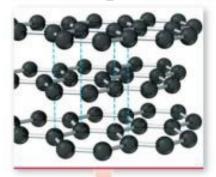
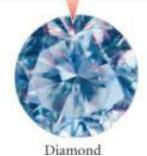
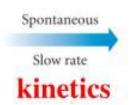

Thermodynamics versus Kinetics

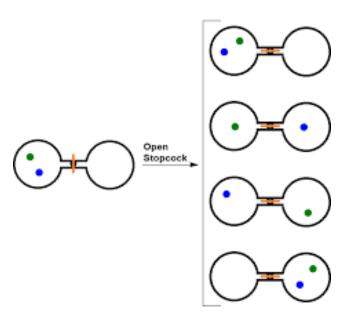

Ch 103 Enthalpy ΔH

Ch 104 thermodynamics (spontaneity) will a reaction happen as written?


Example

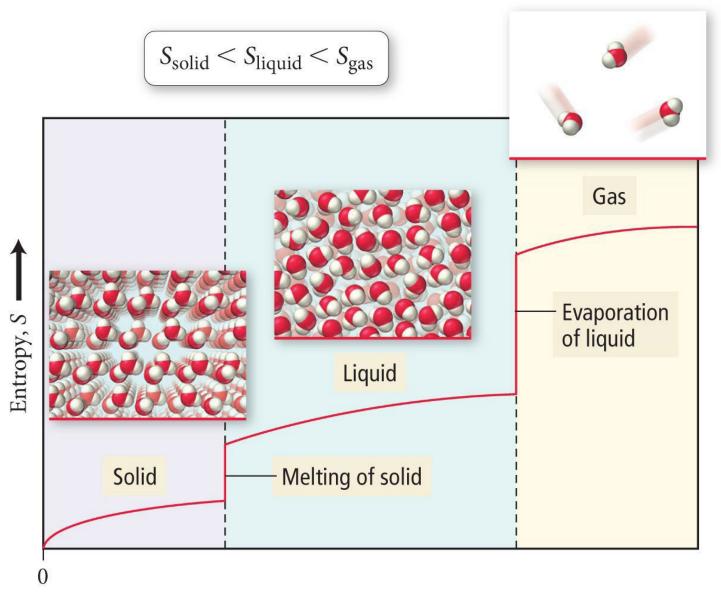

Diamond → Graphite

kinetics: how fast


Spontaneity: direction & extent

Entropy

- Entropy is a thermodynamic function that increases as the number of energetically equivalent ways of arranging the components increases, S.
- $S = k \ln W$, $\Delta S = k \ln(Wf/Wi)$
 - -k = Boltzmann constant = 1.38 × 10⁻²³ J/K
 - W is the number of energetically equivalent ways a system can exist.
 - Unitless


.

How many microstates?

What is the Δ S?

Entropy Change and State Change

Temperature (K)

Second Law of Thermodynamics

 For any spontaneous process the entropy of the universe increases

Entropy is a state function

The Second Law of Thermodynamics

 The second law of thermodynamics says that the total entropy change of the universe must be positive for a process to be spontaneous for an irreversible process. (such as iron rusting)

$$\Delta S_{\text{univ}} > 0$$

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$$

The third law of thermodynamics

For a perfect crystal at absolute zero, the entropy is 0 J/mol-K

Quantifying Entropy Changes in the system

The **standard entropy of reaction**, ΔS_{rxn} , is the entropy change that occurs when all reactants and products are in their standard states.

$$\Delta S_{\text{rxn}} = \Sigma m S_{\text{products}} - \Sigma n S_{\text{reactants}}$$

where *m* and *n* are the amounts (mol) of products and reactants, given by the coefficients in the balanced equation.

A Rechable

Calculate ΔS_{rxn} for the balanced chemical equation:

$$4)NH3(g) +5O2(g) -4NO(g) +6H2O(g)$$

Reactant or product	S° (in J/mol·K)
$NH_3(g)$	192.8
$O_2(g)$	205.2
NO(g)	210.8
$H_2O(g)$	188.8

SCX

Gibb's Free Energy (determines whether a reaction will happen spontaneously as written)

 $\Delta G = \Delta H - T \Delta S$

* ΔG defined in terms of system

*we know ΔSuniv >0 for an irreversible process

How to do we go from ΔS_{univ} to $\Delta Gsys$?

$$\Delta$$
Suniv = Δ Ssys + Δ Ssurr , Δ Ssurr = q/T

*remember first law of thermo from Ch 103

$$q_{\text{surr}} = -q_{\text{sys}}$$
, and at constant pressure $q_{\text{sys}} = \Delta H$

So...
$$\Delta$$
surr = qsurr/T, - Δ Hsys/T

$$\Delta$$
Ssurr = Δ Ssys – Δ Hsys/T, multiply both sides by -T,

Define $-T\Delta Suniv$ as ΔG

$\Delta G = \Delta H - T \Delta S$

A reaction is spontaneous when ΔG <0, why?

Using Gibb's free energy example 1:

 $\Delta G = \Delta H - T \Delta S$

Using Gibb's free energy example 2:

Ozone in the lower atmosphere is a pollutant that can form by the following reaction involving the oxidation of unburned hydrocarbons:

$$CH_4(g) + 8 O_2(g) \rightarrow CO_2(g) + 2 H_2O(g) + 4 O_3(g)$$

Use the standard free energies of formation to determine ΔG_{rxn} for this reaction at 25 °C.

$$\Delta G = \Delta G^{\circ} + RT \ln \left(\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \right)$$
$$= \Delta G^{\circ} + RT \ln Q$$

$$0 = \Delta G^{\circ} + RT \mathrm{ln} K \, (\mathrm{at \; equilibrium})
onumber \ \Delta G^{\circ} = -RT \mathrm{ln} K \, \mathrm{or} \, K = e^{-rac{\Delta G^{\circ}}{RT}}$$