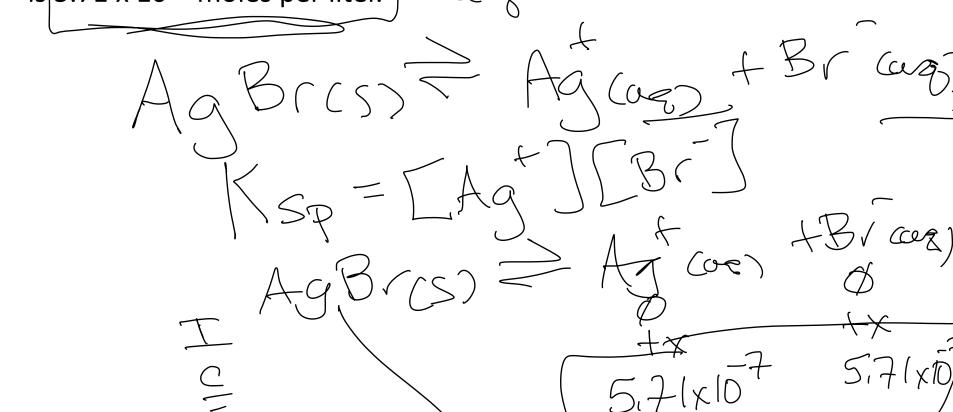
Solubility Equilibria


• All ionic compounds dissolve in water to some degree.

• However, many compounds have such low solubility in water that we classify them as insoluble.

la Calo 3x (mol) molar solubility q./x/0-3 mol 0, 10

Calculating Ksp from molar solubility

Determine the K_{sp} of silver bromide, given that its molar solubility is 5.71×10^{-7} moles per liter. \rightarrow a \sim .

$$Y_{SP} = (5.71 \times 10^{-7})^{2}$$
 $= (5.71 \times 10^{-7})^{2}$
 $= (5.71 \times 10^{-7})^{2}$

Calculating molar solubility from Ksp

 $(\langle \times \rangle)$ Calculate the molar solubility of calcium hydroxide if the Ksp is 6.5×10^{-6}

$$KSp = (X) (2X)^3$$
 $(6.5 \times 10^6) = (4 \times 3) (3)$
 $(6.5 \times 10^6) = (4 \times 3) (3)$
 $(7.5 \times 10^6) = (4 \times 3) (3)$
 $(8.5 \times 10^6) = (4 \times 3) (3)$
 $(9.5 \times 10^6) = (4 \times 3) (3)$

Common ion 0.100 M *F-(aq)*

$$CaF_2(s) \rightleftharpoons Ca^{2+}(aq) + 2F^{-}(aq)$$
Equilibrium shifts left

What is the molar solubility of CaF₂ in a solution containing 0.100 M NaF?

O.180M FT is common ion (Sp=3.9x)0-11 Check [Commonion]

 $Ksp=(x)(0.100)^{2}$ $3.9 \times 10^{-11} = (0.0100)(x)$ $3.9 \times 10^{-11} = (0.0100)(x)$

Precipitation

- $Q = K_{sp}$, the solution is saturated, no precipitation
- \bullet Q < $K_{\rm sp}$, the solution is unsaturated, no precipitation
- $Q > K_{sp}$, the solution would be above saturation, the salt above saturation will precipitate.

Predicting Precipitation Reactions by Comparing Q and $K_{\rm sp}$

A solution containing lead(II) nitrate is mixed with one containing sodium bromide to form a solution that is 0.0150 M in Pb(NQ₃)₂ and 0.00350 M in NaBr. Does a precipitate form in the newly mixed solution?

Qualitative

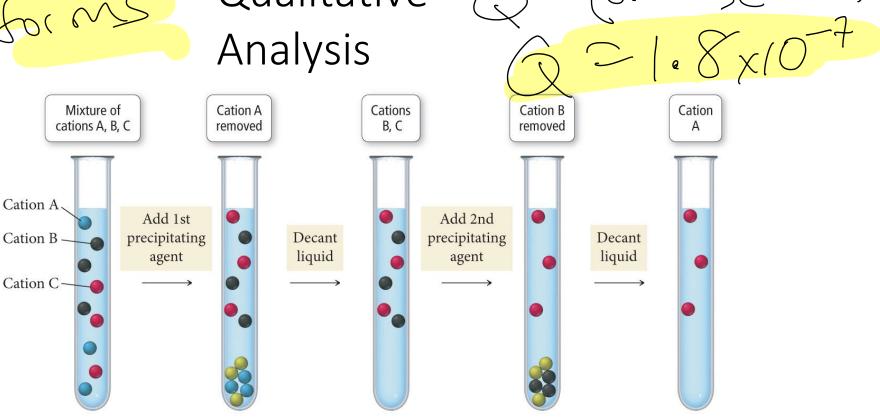
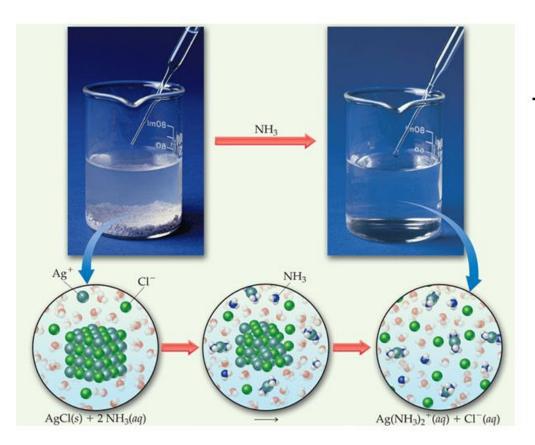



Table 19.4 Formation Constants (K_f) of Some Complex Ions at 25 C

Complex Ion	Kı
Ag(CN)2-	3.0×10^{20}
$Ag(NH_3)_2^+$	1.7×10^{7}
$Ag(S_2O_3)_2^{3-}$	4.7×10^{13}
AIF ₆ ³⁻	4 ×10 ¹⁹
Al(OH) ₄ -	3×10^{33}
Be(OH) ₄ ²⁻	4×10^{18}
CdI ₄ ²⁻	1×10^{6}
Co(OH) ₄ 2-	5 ×109
Cr(OH) ₄ -	8.0×10^{29}
Cu(NH ₃) ₄ ²⁺	5.6×10^{11}
Fe(CN)64-	3×10^{35}
Fe(CN) ₆ ³⁻	4.0×10^{43}
Hg(CN) ₄ 2-	9.3×10^{38}
Ni(NH ₃) ₆ ²⁺	2.0×10^{8}
Pb(OH)3-	8×10^{13}
Sn(OH) ₃	3×10^{25}
Zn(CN) ₄ ²⁻	4.2×10^{19}
$Zn(NH_3)_4^{2+}$	7.8×10^{8}
$Zn(OH)_4^{2-}$	3 ×10 ¹⁵

Complex Ions

-The formation of these complex ions increases the solubility of these salts.

Other ways to increase solubility of "insoluble" salts