

Professor Glickman, the lab practical joker, deftly places a single drop of hydrochloric acid on the back of Professor Bingham's neck. Acids and Bases

1) Chloroacetic acid (CICH₂CO₂H) has $K_a = 1.41 \times 10^{-3}$. What is the value of K_b for the chloroacetate ion (CICH₂CO₂-)?

The Kb for the chloroacetate ion:

Recall the relationship between acids and their conjugate bases: Ka • Kb = Kw

$$K_b$$
 for the chloroacetate ion will be $\frac{1.00 \times 10^{-14}}{1.41 \times 10^{-3}} = 7.09 \times 10^{-12}$

- 2) For each of the following reactions, predict whether the equilibrium lies predominantly to the left or to the right. Explain your predictions briefly.
- (a) $CH_3CO_2H(aq) + Br^+(aq) \Leftrightarrow CH_3CO_2^-(aq) + HBr(aq)$

The equilibrium will favor the weaker acid which can be determined by comparing pk_a of the acids on each side of the reaction. On the left side, the acid is acetic acid, which has a pk_a of 4.7. On the right side, the acid is hydrobromic acid of -8.7. Therefore, the equilibrium will **favor the left side**.

(b)
$$H_3PO_4(aq) + F^+(aq) \Leftrightarrow H_2PO_4^-(aq) + HF(aq)$$

On the left side, the acid is phosphoric acid, a polyprotic acid. The most acidic proton on phosphoric acid has a pk_a of 2.1. On the right side, the acid is hydrofluoric acid, which has a pk_a of 3.2. Therefore, the equilibrium will **favor the right side.**

- 3) Sulfurous acid, H₂SO₃, is a weak acid capable of providing two H⁺ ions.
- (a) What is the pH of a 0.45 M solution of H_2SO_3 ?
- (b) What is the equilibrium concentration of the sulfite ion, SO_3^{2-} , in the 0.45 M solution of H_2SO_3 ?

(a) pH of 0.45 M H2SO3: The equilibria for the diprotic acid are:

$$K_{a1} = \frac{\left[\text{HSO}_3^- \right] \left[\text{H}_3 \text{O}^+ \right]}{\left[\text{H}_2 \text{SO}_3 \right]} = 1.2 \text{ x } 10^{-2} \text{ and } K_{a2} = \frac{\left[\text{SO}_3^{-2-} \right] \left[\text{H}_3 \text{O}^+ \right]}{\left[\text{HSO}_3^- \right]} = 6.2 \text{ x } 10^{-8}$$

For the first step of dissociation:

	H ₂ SO ₃	HSO3-	H3O+
Initial concentration	0.45 M		2
Change	-x	+x	+x
Equilibrium	0.45 - x	+x	+x

Substituting into the K_{a1} expression: $K_{a1} = \frac{(x)(x)}{(0.45-x)} = 1.2 \times 10^{-2}$

We must solve this expression with the quadratic equation since $(0.45 < 100 \cdot K_{a1})$.

The equilibrium concentrations for HSO₃⁻ and H₃O⁺ ions are found to be 0.0677 M.

The further dissociation is indicated by Ka2.

Using the equilibrium concentrations from the first step, substitute into the K_{a2} expression.

	HSO3-	SO3 ²⁻	H3O+
Initial concentration	0.0677	0	0.0677
Change	-x	+x	+x
Equilibrium	0.0677 - x	+x	0.0677 + x

$$K_{a2} = \frac{[SO_3^{2-}][H_3O^+]}{[HSO_3^-]} = \frac{(+x)(0.0677 + x)}{(0.0677 - x)} = 6.2 \times 10^{-8}$$

We note that x will be small in comparison to 0.0677, and we simplify the expression:

$$K_{a2} = \frac{(+x)(0.0677)}{(0.0677)} = 6.2 \times 10^{-8}$$

In summary, the concentrations of HSO_3^- and H_3O^+ ions have been virtually unaffected by the second dissociation. So $[H_3O^+] = 0.0677$ M and pH = 1.17

(b) The equilibrium concentration of SO_3^{2-} :

From the K_{a2} expression above: $[SO_3^{2-}] = 6.2 \times 10^{-8} M$

4) What is the pH of 1.0 L of 0.20 M acetic acid to which 16.4 g of sodium acetate, $NaCH_3CO_2$, is added?

16.4 g of Sodium Acetate * (1 mol Sodium Acetate / 82.0343 g) = 0.2 moles Sodium acetate

0.2 M acetic acid * (1 L) = 0.2 moles acetic acid

 $pH = pk_a + log(conjugate base/acid)$

pH = 4.7 + log(0.2 / 0.2)

pH = 4.7

5) What is the pH of the buffer solution that contains 2.2 g of NH₄Cl in 250 mL of 0.12 M NH₃? Is the final pH lower or higher than the pH of the 0.12 M ammonia solution?

 $2.2 \text{ g NH}_4\text{Cl} * (1 \text{ mol} / 53.491 \text{ g}) = 0.0411 \text{ moles NH}_4\text{Cl}$

 $0.12 \text{ M NH}_3 * (.250 \text{ L}) = 0.03 \text{ moles NH}_3$

 $pH = pk_a + log(conjugate base/acid)$

pH = 9.25 + log(0.03 / 0.0411)

pH = 9.11

 $NH_3(aq) + H_2O(I) \Leftrightarrow OH^-(aq) + NH_4^+(aq)$

	NH ₃	H ₂ O	OH-	NH ₄ ⁺
I (M)	0.12		0	0
C (M)	-X		+x	+x
E (M)	0.12 - x		X	X

$$1.8 * 10^{-5} = x^2 / 0.12 - x$$

Assume x to be small relative to 0.12 so this expression simplifies to:

$$1.8 * 10^{-5} = x^2 / 0.12$$

 $x = 0.0015$
 $[OH^-] = 0.0015 M$
 $pH = 14 - pOH$
 $pH = 14 - (-log(0.0015))$
 $pH = 11.18$

The final pH is lower than the pH of the 0.12 M ammonia solution.

6) What must the ratio of acetic acid to acetate ion be to have a buffer with a pH value of 4.50?

```
pH = pk<sub>a</sub> + log(conjugate base/acid)

pH - pk<sub>a</sub> = log(conjugate base/acid)

10^{4.50-4.74} = conjugate base / acid

0.575 = conjugate base / acid

Acetic acid / Acetate lon = 1.76
```

- 7) Which of the following combinations would be the best to buffer the pH of a solution at approximately 9?
- (a) HCl and NaCl
- (b) NH₃ and NH₄Cl

(c) CH₃CO₂H and NaCH₃CO₂

- 17. The best combination to provide a buffer solution of pH 9 is (b) the NH3/NH4⁺ system. Note that K_a (for NH4⁺) is approximately 10^{-10} . Buffer systems are good when the desired pH is ± 1 unit from pKa (10 in this case). The HCl and NaCl don't form a buffer. The acetic acid/sodium acetate system would form an acidic_buffer (pKa ≈ 5) in the pH range 4 6.
- 8) You titrate 25.0 mL of 0.10 M NH_3 with 0.10 M HCl.
- (a) What is the pH of the NH₃ solution before the titration begins?

$$0.025 L * 0.10 M NH_3 = 0.0025 mol NH_3$$

$$NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$$

	NH ₃	NH ₄ ⁺	OH-
1	0.1 M	0	0
С	-X	+x	+x
Е	0.1 M	x	X

$$k_b = 1.8*10^{-5} = x^2/(0.1 \text{ M})$$

 $x = [OH^-] = 0.001342 \text{ M}$
 $pOH = 2.87$
 $pH = 14 - 2.87 = 11.13$

(b) What is the pH at the equivalence point?

$$NH_3 + H_3O^+ \rightarrow NH_4^+ + H_2O$$

	NH ₃	H ₃ O ⁺	NH ₄ ⁺	H ₂ O
I	0.0025 mol	0.0025 mol	0	_
С	-0.0025 mol	-0.0025 mol	+0.0025 mol	_
Е	0 mol	0 mol	0.0025 mol	_

$$NH_4^+ + H_2O \Leftrightarrow NH_3 + H_3O^+$$

	NH ₄ ⁺	NH ₃	H₃O ⁺
1	0.0025 mol	0	0
С	-X	+x	+x
Е	0.0025 mol	х	х

$$K_a = 5.8 * 10^{-10} = x^2/(0.0025 \text{ mol } /0.05 \text{ L})$$

 $x = [H_3O^+] = 5.39 * 10^{-6} \text{ M}$
 $pH = 5.28$

(c) What is the pH at the halfway point of the titration?

```
pH = pK_a

pH = -log(5.8*10^{-10})

pH = 9.25
```

Solubility

9) When 1.55 g of solid thallium(I) bromide is added to 1.00 L of water, the salt dissolves to a small extent.

$$TIBr(s) \Leftrightarrow TI^{+}(aq) + Br^{-}(aq)$$

The thallium(I) and bromide ions in equilibrium with TIBr each have a concentration of 1.9×10^{-3} M. What is the value of K_{sp} for TIBr?

$$K_{sp} = [TI^{+}][Br^{-}] = (1.9 * 10^{-3})^{2} = 3.6 * 10^{-6}$$

10) Calculate the molar solubility of silver thiocyanate, AgSCN, in pure water and in water containing 0.010 M NaSCN.

57. The equilibrium for AgSCN dissolving is: AgSCN (s) \Leftrightarrow Ag⁺ (aq) + SCN⁻ (aq).

As x mol/L of AgSCN dissolve in pure water, x mol/L of Ag⁺ and x mol/L of SCN⁻ are produced. The expression would be: $K_{SD} = [Ag^+][SCN^-]$

Substituting x for the concentrations of the ions: $x^2 = 1.0 \times 10^{-12}$ and $x = 1.0 \times 10^{-6}$ M So 1.0×10^{-6} mol AgSCN/L dissolve in pure water.

The equilibrium for AgSCN dissolving in NaSCN (0.010 M) is like that above.

Equimolar amounts of Ag⁺ and SCN⁻ ions are produced as the solid dissolves.

However the [SCN-] is augmented by the soluble NaSCN.

$$K_{Sp} = [Ag^+][SCN^-] = (x)(x + 0.010) = 1.0 \times 10^{-12}$$

We can simplify the expression by assuming that $x + 0.010 \approx 0.010$. Note that the value of x above (1.0×10^{-6}) lends credibility to this assumption.

$$(x)(0.010) = 1.0 \times 10^{-12}$$
 and $x = 1.0 \times 10^{-10}$ M

The solubility of AgSCN in 0.010 M NaSCN is 1.0 x 10⁻¹⁰ M -- reduced by four orders of magnitude from its solubility in pure water. LeChatelier strikes again!

- 11) You have a solution that has a lead(II) ion concentration of 0.0012 M. If enough soluble chloride-containing salt is added so that the Cl⁻ concentration is 0.010 M, will PbCl₂ precipitate?
- 65. Given the equation for PbCl₂ dissolving in water: PbCl₂ (s) \Leftrightarrow Pb⁺² (aq) + 2 Cl⁻ we can write the K_{sp} expression: K_{sp} = [Pb⁺²][Cl⁻]² = 1.7 x 10⁻⁵

Substituting the ion concentrations into the Ksp expression we get: $Q = [Pb^{+2}][Cl^{-}]^2 = (0.0012)(0.010)^2 = 1.2 \times 10^{-7}$ Since Q is less than K_{Sp} , no PbCl₂ precipitates.

- 12) If the concentration of Zn^{2+} in 10.0 mL of water is 1.63 × 10⁻⁴ M, will zinc hydroxide, $Zn(OH)_2$, precipitate when 4.0 mg of NaOH is added?
 - . If $Zn(OH)_2$ is to precipitate, the reaction quotient (Q) must exceed the K_{SP} for the salt.

4.0 mg of NaOH in 10. mL corresponds to a concentration of:

$$[OH^{-}] = \frac{4.0 \times 10^{-3} \text{ g NaOH}}{0.0100 \text{ L}} \quad \bullet \frac{1 \text{ mol NaOH}}{40.0 \text{ g NaOH}} = 0.010 \text{ M}$$

The value of Q is: $[Zn^{2+}][OH^{-}]^{2} = (1.6 \times 10^{-4})(1.0 \times 10^{-2})^{2} = 1.6 \times 10^{-8}$ The value of Q is greater than the K_{SP} for the salt (4.5×10^{-17}) , so Zn(OH)₂ precipitates.

Thermodynamics

- 13) Which substance in each pair has the higher entropy?
- (a) Dry ice (solid CO₂) at -78 °C or CO₂(g) at 0 °C.
- (b) Liquid water at 25 °C or liquid water at 50 °C.
- (d) One mole of $N_2(g)$ at 1 bar pressure or one mole of $N_2(g)$ at 10 bar pressure (both at 298 K).

Compound with the higher entropy:

- (a) CO2 (s) at -78° vs CO2 (g) at 0 °C: Entropy increases with temperature.
- (b) H₂O (l) at 25 °C vs H₂O (l) at 50 °C: Entropy increases with temperature.
- (c) Al₂O₃ (s) (pure) vs Al₂O₃ (s) (ruby): Entropy of a solution (even a solid one) is greater than that of a pure substance.
- (d) 1 mol N₂ (g) at 1 bar vs 1 mol N₂ (g) at 10 bar: With the increased P, molecules have greater order.
- 14) Calculate the standard entropy change for the following reactions at 25°C.
- (a) 2 Al(s) + 3 Cl₂(g) \rightarrow 2 AlCl₃(s)

 $\Delta_r S^\circ = (2 \text{ mol})(109.29 \text{ J/K*mol}) - [(3 \text{ mol})(223.08 \text{ J/K*mol}) + (2 \text{ mol})(28.3 \text{ J/K*mol})]$

 $\Delta_r S^{\circ} = -507.26 \text{ J/K}$

(b) 2 CH₃OH(I) + 3 O₂(g) \rightarrow 2 CO₂(g) + 4 H₂O(g)

 $\Delta_r S^\circ = [(4 \text{ mol } *188.84 \text{ J/K*mol}) + (2 \text{ mol } *213.74 \text{ J/K*mol})] - [(2 \text{ mol } *127.19 \text{ J/K*mol})] + (3 \text{ mol } *205.07 \text{ J/K*mol})]$

 $\Delta_r S^{\circ} = 313.25 \text{ J/K}$

- 15) Using values of $\Delta_f H^\circ$ and S° , calculate $\Delta_r G^\circ$ for each of the following reactions at 25°C.
- (a) 2 Pb(s) + $O_2(g) \rightarrow 2$ PbO(s)
- (b) $NH_3(g) + HNO_3(aq) \rightarrow NH_4NO_3(aq)$

Which of these reactions is (are) predicted to be product-favored at equilibrium? Are the reactions enthalpy or entropy-driven?

. Calculate
$$\Delta_r G^\circ$$
 for:
(a) $2 \text{ Pb (s)} + O_2 \text{ (g)} \rightarrow 2 \text{ PbO (s)}$

$$\Delta_r H^\circ = (2 \text{ mol})(-219 \frac{\text{kJ}}{\text{mol}}) - [0 + 0] = -438 \text{ kJ}$$

$$\Delta_r S^\circ = (2 \text{ mol})(66.5 \frac{\text{J}}{\text{K} \bullet \text{mol}}) - [(2 \text{ mol})(64.81 \frac{\text{J}}{\text{K} \bullet \text{mol}}) + (1 \text{ mol})(205.07 \frac{\text{J}}{\text{K} \bullet \text{mol}})] = -201.7 \text{ J/K}$$

$$\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ = -438 \text{ kJ} - (298.15 \text{ K})(-201.7 \text{ J/K})(\frac{1.000 \text{ kJ}}{1000 \text{ J}}) = -378 \text{ kJ}$$

Reaction is product-favored since $\Delta G < 0$. With the very large negative ΔH , the process is enthalpy driven.

(b) NH₃(g) + HNO₃(aq)
$$\rightarrow$$
 NH₄NO₃ (aq)
$$\Delta_{f}H^{\circ} = (1 \text{ mol})(-339.87 \frac{kJ}{\text{mol}}) - [(1 \text{ mol})(-45.90 \frac{kJ}{\text{mol}}) + (1 \text{ mol})(-207.36 \frac{kJ}{\text{mol}}] = -86.61 \text{ kJ}$$

$$\Delta_{f}S^{\circ} = (1 \text{ mol})(259.8 \frac{J}{\text{K} \cdot \text{mol}}) - [(1 \text{ mol})(192.77 \frac{J}{\text{K} \cdot \text{mol}}) + (1 \text{ mol})(146.4 \frac{J}{\text{K} \cdot \text{mol}})] = -79.4 \frac{J}{\text{K} \cdot \text{mol-rxn}}$$

$$\Delta_{f}G^{\circ} = \Delta_{f}H^{\circ} - T\Delta_{f}S^{\circ} = -86.61 \text{ kJ} - (298.15 \text{ K})(-79.4 \text{ J/K})(\frac{1.000 \text{ kJ}}{1000. \text{ J}}) = -62.9 \frac{kJ}{\text{mol-rxn}}$$
 Reaction is product-favored since $\Delta G < 0$. With the very large negative ΔH , the process is enthalpy driven.

16) Determine whether the reactions listed below are entropy-favored or disfavored under standard conditions. Predict how an increase in temperature will affect the value of $\Delta_r G^{\circ}$.

(a)
$$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$

(b) 2 C(s) +
$$O_2(g) \rightarrow 2$$
 CO(g)

(a)
$$N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$$

$$\Delta_T H^* = (2 \text{ mol})(+33.1 \frac{kJ}{\text{mol}}) - [0+0] = +66.2 \frac{kJ}{\text{mol-rxn}}$$

$$\Delta_T S^* = (2 \text{ mol})(+240.04 \frac{J}{K \bullet \text{mol}}) - [(1 \text{mol})(191.56 \frac{J}{K \bullet \text{mol}}) + (2 \text{ mol})(+205.07 \frac{J}{K \bullet \text{mol}})] = -121.62 \frac{J}{K \bullet \text{mol-rxn}}$$

$$\Delta_T G^* = (2 \text{ mol})(51.23 \frac{kJ}{\text{mol}}) - [(1 \text{ mol})(0 \frac{kJ}{\text{mol}}) + (1 \text{ mol})(0 \frac{kJ}{\text{mol}})] = 102.5 \text{ kJ}$$
The reaction is entropy-disfavored and enthalpy-disfavored.

There is no T at which $\Delta G < 0$.

(b)
$$2 \text{ C (s)} + \text{O}_2 \text{ (g)} \rightarrow 2 \text{ CO (g)}$$

$$\Delta_T H^\circ = (2 \text{ mol})(-110.525 \frac{\text{kJ}}{\text{mol}}) - [0 + 0] = -221.05 \frac{\text{kJ}}{\text{mol-rxn}}$$

$$\Delta_T S^\circ = (2 \text{ mol})(+197.674 \frac{\text{J}}{\text{K} \bullet \text{mol}}) -$$

$$\Delta_r S^\circ = [2 \text{ mol}^* \ 197.674 \ \text{J/(K*mol)}] - [1 \text{ mol} \ ^*205.07 \ \text{J/(K*mol)} + 2 \text{ mol} \ ^* 5.6 \ \text{J/(K*mol)}] = 179.078 \ \text{J/K}$$

$$\Delta_r G^\circ = \Delta_r H^\circ - T \Delta_r S^\circ$$

$$\Delta_r G^\circ = -221.05 \ \text{kJ} - 298 \ \text{K} \ (179.078^* 10^{-3} \ \text{kJ/K})$$

 $\Delta_r G^\circ = -274.45 \text{ kJ/mol}$

17) Calculate $\Delta_r G^\circ$ at 25°C for the formation of 1.00 mol of $C_2H_6(g)$ from $C_2H_4(g)$ and $H_2(g)$. Use this value to calculate Kp for the equilibrium.

$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

Comment on the sign of $\Delta_{{\mbox{\tiny r}}} G^{\circ}$ and the magnitude of ${\mbox{\it K}}_{{\mbox{\tiny p}}}.$

$$\Delta_{r}G^{\circ} = \Sigma \Delta_{f}G^{\circ}_{products} - \Sigma \Delta_{f}G^{\circ}_{reactants}$$
$$= -31.89 - (68.35 + 0) = -100.24 \text{ kJ/(mol*rxn)}$$

$$\Delta G^{\circ} = -RT*ln(K)$$
-100.24 kJ/(mol*rxn) = -8.314 J/(mol*K) * 298 K * ln(K)

K = 3.7 * 10¹⁷ ... Large K value means product favored.

Electrochemistry

18) Balance the following redox equation in acidic conditions.

$$Sn(s) + H^{+}(aq) \rightarrow Sn^{2+}(aq) + H_{2}(g)$$

Step 1)

$$Sn(s) \rightarrow Sn^{2+}(aq)$$

$$H^+(aq) \rightarrow H_2(g)$$

Step 2)

$$H^+(aq) + H^+(aq) \rightarrow H_2(g)$$

Step 3)

$$Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$$

$$2e^{-} + H^{+}(aq) + H^{+}(aq) \rightarrow H_{2}(g)$$

Step 4)

$$Sn(s) + 2 H^{+}(aq) \rightarrow Sn^{2+}(aq) + H_{2}(g)$$

19) Balance the following redox equation in basic conditions.

$$CrO_4^{2-}(aq) + SO_3^{2-}(aq) \rightarrow Cr(OH)_3(s) + SO_4^{2-}(aq)$$

Step 1)

$$CrO_4^{2-}(aq) \rightarrow Cr(OH)_3(s)$$

$$SO_3^{2-}(aq) \to SO_4^{2-}(aq)$$

Step 2)

$$CrO_4^{2-}(aq) \rightarrow Cr(OH)_3(s) + H_2O(l)$$

$$H_2O(I) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq)$$

Step 3)

$$5 \text{ H}^+ + \text{CrO}_4^{2-}(\text{aq}) \rightarrow \text{Cr}(\text{OH})_3(\text{s}) + \text{H}_2\text{O}(\text{I})$$

$$H_2O(I) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq) + 2 H^+$$

Step 4)

$$5 H^+ + CrO_4^{2-}(aq) + 3e^- \rightarrow Cr(OH)_3(s) + H_2O(I)$$

$$H_2O(I) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq) + 2 H^+ + 2e^-$$

Step 5)

10 H⁺ + 2 CrO₄²⁻(aq) + 6e⁻
$$\rightarrow$$
 2 Cr(OH)₃(s) + 2 H₂O(I)

$$3 H_2O(I) + 3 SO_3^{2-}(aq) \rightarrow 3 SO_4^{2-}(aq) + 6 H^+ + 6e^-$$

Step 6)

$$4 H^{+} + 2 CrO_{4}^{2-}(aq) + H_{2}O(I) + 3 SO_{3}^{2-}(aq) \rightarrow 2 Cr(OH)_{3}(s) + 3 SO_{4}^{2-}(aq)$$

Step 7)

$$5 H_2O(I) + 2 CrO_4^{2-}(aq) + 3 SO_3^{2-}(aq) \rightarrow 2 Cr(OH)_3(s) + 3 SO_4^{2-}(aq) + 4OH^{-}(aq)$$

20) A voltaic cell is constructed using the reaction of chromium metal and iron(II) ions.

$$2 \text{ Cr(s)} + 3 \text{ Fe}^{2+}(\text{aq}) \rightarrow 2 \text{ Cr}^{3+}(\text{aq}) + 3 \text{ Fe(s)}$$

Complete the following sentences: Electrons in the external circuit flow from the Cr electrode to the Fe electrode. Negative ions move in the salt bridge from the Fe|Fe²⁺ half-cell to the Cr|Cr³⁺ half-cell. The half-reaction at the anode is Cr(s) \rightarrow Cr³⁺(aq) + 3e⁻, and that at the cathode is Fe²⁺(aq) + 2e⁻ \rightarrow Fe(s).

21) Balance each of the following unbalanced equations; then calculate the standard potential, *E*°cell, and decide whether each is product-favored at equilibrium as written. (All reactions are carried out in acid solution.)

(a)
$$\operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{Ag}(\operatorname{s}) \to \operatorname{Sn}(\operatorname{s}) + \operatorname{Ag}^{+}(\operatorname{aq})$$

(a)
$$Sn^{2+}(aq) + 2 Ag(s) \rightarrow Sn(s) + 2 Ag^{+}(aq)$$

Cathode reaction: $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $E^{\circ} = -0.14 \text{ V}$
Anode reaction: $2 Ag(s) \rightarrow 2 Ag^{+}(aq) + 2e^{-} \rightarrow E^{\circ} = +0.7994 \text{ V}$
Cell voltage: $E^{\circ} = -0.94 \text{ V}$ (not product-favored)

(b)
$$AI(s) + Sn^{4+}(aq) \rightarrow Sn^{2+}(aq) + AI^{3+}(aq)$$

$$3 \text{ Sn}^{4+}(aq) + 2 \text{ Al}(s) \rightarrow 3 \text{ Sn}^{2+}(aq) + 2 \text{ Al}^{3+}(aq)$$

Cathode reaction: Sn⁴⁺ + 2e⁻ → Sn²⁺

Anode reaction: Al → Al³⁺ + 3e⁻

$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = 0.15 \text{ V} - (-1.66 \text{ V}) = 1.81 \text{ V}$$

Product favored at equilibrium

22) Calculate $\Delta_r G^{\circ}$ and the equilibrium constant for the following reactions.

(a)
$$2 \text{ Fe}^{3+}(aq) + 2 \text{ I}^{-}(aq) \Leftrightarrow 2 \text{ Fe}^{2+}(aq) + \text{ I}_{2}(aq)$$

Cathode reaction: 2 Fe³⁺ + 2 e⁻ → 2 Fe²⁺

Anode reaction: $2 I^- \rightarrow I_2 + 2e^-$

$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = 0.771 \text{ V} - 0.621 \text{ V} = 0.15 \text{ V}$$

$$\Delta_r G^\circ = -nFE^\circ_{cell}$$

$$\Delta_r G^\circ = -2 * 96,000 C * 0.15 V = -28.8 kJ$$

$$E_{cell}^{\circ} = (0.0257/n) * ln K$$

$$0.15 = 0.0257/2 * ln(K)$$

$$K = 1.2 * 10^5$$

(b)
$$I_2(aq) + 2 Br(aq) \Leftrightarrow 2 I(aq) + Br_2(I)$$

Cathode reaction: $I_2 + 2e^- \rightarrow 2 I^-$

Anode reaction: 2 Br⁻ → Br₂+ 2e⁻

$$E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} = 0.621 \text{ V} - 1.08 \text{ V} = -0.46 \text{ V}$$

$$\Delta_r G^\circ = -nFE^\circ_{cell}$$

$$\Delta_r G^\circ = -2 * 96,000 C * -0.46 J = 88.3 kJ$$

$$E_{cell}^{\circ}$$
 = (0.0257/n) * In K

$$-0.46 = (0.0257/2) * In K$$

$$K = 2.8 * 10^{-16}$$

23) The standard potential, E°cell, for the reaction of Zn(s) and Cl₂(g) is +2.12 V. What is the standard free energy change, Δ_r G°, for the reaction?

$$\Delta_r G^\circ = -nFE^\circ_{cell}$$

 $\Delta_r G^\circ = -2 * 96000 * 2.12 = -407 kJ$